Suppr超能文献

电子健康记录数据用于评估 COVID-19 住院风险:应用于多发性硬化症的方法学考虑。

Electronic health record data for assessing risk of hospitalization for COVID-19: Methodological considerations applied to multiple sclerosis.

机构信息

F. Hoffmann-La Roche Ltd, Basel, Switzerland.

TranScrip Partners LLP, Wokingham, UK.

出版信息

Mult Scler Relat Disord. 2023 Mar;71:104512. doi: 10.1016/j.msard.2023.104512. Epub 2023 Jan 11.

Abstract

INTRODUCTION

During the COVID-19 pandemic, electronic health record (EHR) data has been used to investigate disease severity and risk factors for severe COVID-19 in people with multiple sclerosis (pwMS). Methodological challenges including sampling bias, and residual confounding should be considered when conducting EHR-based studies. We aimed to address these limitations related to the use of EHR data in order to identify risk factors, including the use of disease modifying therapies (DMTs), associated with hospitalization for COVID-19 amongst pwMS.

METHODS

We performed a retrospective cohort study including a sample of 47,051 pwMS using a large US-based EHR and claims linked database. Follow-up started at the beginning of the pandemic, February 20th 2020, and continued until September 30th 2020. COVID-19 diagnosis was determined by the presence of ICD-10 diagnostic code for COVID-19, or a positive diagnostic laboratory test, or an ICD-10 diagnostic code for coronaviruses. We used Cox regression modeling to assess the impact of baseline demographics, MS disease history and pre-existing comorbidities on the risk of hospitalization for COVID-19. Then, we identified 5,169 pwMS using ocrelizumab (OCR) and 3,351 pwMS using dimethyl fumarate (DMF) at baseline, and evaluated the distribution of the identified COVID-19 risk factors between the two groups. Finally, we used Cox regression models, adjusted for the identified confounders, to estimate the risk of hospitalization for COVID-19 in pwMS treated with OCR compared to DMF.

RESULTS

Among the pwMS cohort, we identified 799 COVID-19 cases (1.7%) which resulted in 182 hospitalizations for COVID-19 (0.4%). Population differences between the pwMS and COVID-19 cohorts were observed. Statistical modeling identified older age, male gender, African-American race, walking with assistance, non-ambulatory status, severe relapse requiring hospitalization in year prior to baseline, and specific comorbidities to be associated with a higher risk of COVID-19 related-hospitalization. Comparing the COVID-19 risk factors between OCR users and DMF users, MS characteristics including ambulatory status and MS subtype were highly imbalanced, likely arising from key differences in the labelled indications for these therapies. Compared to DMF use, in unadjusted (HR 1.58, 95% CI 0.73 - 3.44), adjusted (HR 1.28, 95% CI 0.58 - 2.83), propensity score weighted (HR 1.25, 95% CI 0.56 - 2.80), and doubly robust models (HR 1.29, 95% CI 0.57 - 2.89), no significantly increased risk of hospitalization for COVID-19 was associated with OCR use.

CONCLUSION

We observed significant population differences when comparing all pwMS to COVID-19 cases, as well as significant differences in key confounders between OCR and DMF treated patients. In unadjusted analyses we did not observe a statistically significant higher risk of COVID-19 hospitalization in pwMS treated with OCR compared to DMF, with further attenuation of risk when adjusting for the key confounders. This study re-emphasises the importance to appropriately consider both sampling and confounding bias in EHR-based MS research.

摘要

简介

在 COVID-19 大流行期间,电子健康记录 (EHR) 数据已被用于研究多发性硬化症 (pwMS) 患者 COVID-19 严重程度和严重 COVID-19 的风险因素。在进行基于 EHR 的研究时,应考虑包括抽样偏差和残余混杂在内的方法学挑战。我们旨在解决与使用 EHR 数据相关的这些限制,以确定与因 COVID-19 住院相关的风险因素,包括使用疾病修正疗法 (DMT)。

方法

我们进行了一项回顾性队列研究,该研究纳入了使用美国大型 EHR 和索赔相关数据库的 47051 名 pwMS 样本。随访从大流行开始,即 2020 年 2 月 20 日开始,一直持续到 2020 年 9 月 30 日。COVID-19 的诊断是通过存在 COVID-19 的 ICD-10 诊断代码、阳性诊断实验室检测结果或冠状病毒的 ICD-10 诊断代码来确定的。我们使用 Cox 回归模型评估基线人口统计学、MS 疾病史和预先存在的合并症对 COVID-19 住院风险的影响。然后,我们在基线时确定了 5169 名使用奥瑞珠单抗 (OCR) 的 pwMS 和 3351 名使用二甲基富马酸 (DMF) 的 pwMS,并评估了这两组之间确定的 COVID-19 风险因素的分布情况。最后,我们使用 Cox 回归模型,根据确定的混杂因素进行调整,估计与 DMF 相比,OCR 治疗的 pwMS 因 COVID-19 住院的风险。

结果

在 pwMS 队列中,我们确定了 799 例 COVID-19 病例(1.7%),其中 182 例因 COVID-19 住院(0.4%)。pwMS 队列和 COVID-19 队列之间存在人群差异。统计建模确定年龄较大、男性、非裔美国人、需要辅助行走、非活动性状态、在基线前一年因严重复发需要住院治疗以及特定合并症与 COVID-19 相关住院风险较高相关。比较 OCR 使用者和 DMF 使用者之间的 COVID-19 风险因素,MS 特征包括活动状态和 MS 亚型高度不平衡,这可能是由于这些疗法的标签适应症存在关键差异。与 DMF 相比,在未调整(HR 1.58,95%CI 0.73-3.44)、调整(HR 1.28,95%CI 0.58-2.83)、倾向评分加权(HR 1.25,95%CI 0.56-2.80)和双重稳健模型(HR 1.29,95%CI 0.57-2.89)中,与 COVID-19 住院相关的风险未显著增加与 OCR 使用相关。

结论

当将所有 pwMS 与 COVID-19 病例进行比较时,我们观察到显著的人群差异,以及 OCR 和 DMF 治疗患者之间关键混杂因素的显著差异。在未调整分析中,与 DMF 相比,OCR 治疗的 pwMS 因 COVID-19 住院的风险没有统计学上显著增加,当调整关键混杂因素时,风险进一步降低。这项研究再次强调了在基于 EHR 的 MS 研究中适当考虑抽样和混杂偏倚的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验