Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fedérale de Lausanne (EPFL), 1202, Geneva, Switzerland.
Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fedérale de Lausanne (EPFL), 1202, Geneva, Switzerland; Bertarelli Foundation Chair in Translational Neuroengineering, Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland.
Biomaterials. 2023 Mar;294:122024. doi: 10.1016/j.biomaterials.2023.122024. Epub 2023 Jan 25.
The brain is an ultra-soft viscoelastic matrix. Sub-kPa hydrogels match the brain's mechanical properties but are challenging to manipulate in an implantable format. We propose a simple fabrication and processing sequence, consisting of de-hydration, patterning, implantation, and re-hydration steps, to deliver brain-like hydrogel implants into the nervous tissue. We monitored in real-time the ultra-soft hydrogel re-swelling kinetics in vivo using microcomputed tomography, achieved by embedding gold nanoparticles inside the hydrogel for contrast enhancement. We found that re-swelling in vivo strongly depends on the implant geometry and water availability at the hydrogel-tissue interface. Buckling of the implant inside the brain occurs when the soft implant is tethered to the cranium. Finite-element and analytical models reveal how the shank geometry, modulus and anchoring govern in vivo buckling. Taken together, these considerations on re-swelling kinetics of hydrogel constructs, implant geometry and soft implant-tissue mechanical interplay can guide the engineering of biomimetic brain implants.
大脑是一种超软粘弹性基质。亚千帕斯卡的水凝胶与大脑的机械性能相匹配,但在植入式格式中难以操作。我们提出了一种简单的制造和处理顺序,包括脱水、图案化、植入和再水合步骤,以将类似大脑的水凝胶植入物递送到神经组织中。我们使用微计算机断层扫描实时监测体内超软水凝胶的再溶胀动力学,方法是在水凝胶内部嵌入金纳米粒子以增强对比度。我们发现,体内再溶胀强烈取决于植入物的几何形状和水凝胶-组织界面处的水分可用性。当软植入物被系在颅骨上时,植入物在大脑内会发生弯曲。有限元和分析模型揭示了柄几何形状、模量和锚固如何控制体内弯曲。综上所述,这些关于水凝胶结构的再溶胀动力学、植入物几何形状和软植入物-组织力学相互作用的考虑因素可以指导仿生大脑植入物的工程设计。