Suppr超能文献

显著度-CCE:利用颜色上下文提取器和基于显著度的生物医学图像分割。

Saliency-CCE: Exploiting colour contextual extractor and saliency-based biomedical image segmentation.

机构信息

Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, P.R. China; College of Physics and Information Engineering, Fuzhou University, Fuzhou, P.R. China.

College of Physics and Information Engineering, Fuzhou University, Fuzhou, P.R. China.

出版信息

Comput Biol Med. 2023 Mar;154:106551. doi: 10.1016/j.compbiomed.2023.106551. Epub 2023 Jan 20.

Abstract

Biomedical image segmentation is one critical component in computer-aided system diagnosis. However, various non-automatic segmentation methods are usually designed to segment target objects with single-task driven, ignoring the potential contribution of multi-task, such as the salient object detection (SOD) task and the image segmentation task. In this paper, we propose a novel dual-task framework for white blood cell (WBC) and skin lesion (SL) saliency detection and segmentation in biomedical images, called Saliency-CCE. Saliency-CCE consists of a preprocessing of hair removal for skin lesions images, a novel colour contextual extractor (CCE) module for the SOD task and an improved adaptive threshold (AT) paradigm for the image segmentation task. In the SOD task, we perform the CCE module to extract hand-crafted features through a novel colour channel volume (CCV) block and a novel colour activation mapping (CAM) block. We first exploit the CCV block to generate a target object's region of interest (ROI). After that, we employ the CAM block to yield a refined salient map as the final salient map from the extracted ROI. We propose a novel adaptive threshold (AT) strategy in the segmentation task to automatically segment the WBC and SL from the final salient map. We evaluate our proposed Saliency-CCE on the ISIC-2016, the ISIC-2017, and the SCISC datasets, which outperform representative state-of-the-art SOD and biomedical image segmentation approaches. Our code is available at https://github.com/zxg3017/Saliency-CCE.

摘要

生物医学图像分割是计算机辅助系统诊断的一个关键组成部分。然而,各种非自动分割方法通常是为具有单任务驱动的目标对象设计的,忽略了多任务的潜在贡献,例如显著目标检测 (SOD) 任务和图像分割任务。在本文中,我们提出了一种用于生物医学图像中白细胞 (WBC) 和皮肤病变 (SL) 显著检测和分割的新的双任务框架,称为 Saliency-CCE。Saliency-CCE 包括对皮肤病变图像进行去毛发预处理、用于 SOD 任务的新型颜色上下文提取器 (CCE) 模块以及用于图像分割任务的改进自适应阈值 (AT) 范例。在 SOD 任务中,我们执行 CCE 模块通过一个新的颜色通道体积 (CCV) 块和一个新的颜色激活映射 (CAM) 块提取手工制作的特征。我们首先利用 CCV 块生成目标对象的感兴趣区域 (ROI)。之后,我们采用 CAM 块从提取的 ROI 中生成精细的显著图作为最终显著图。我们在分割任务中提出了一种新的自适应阈值 (AT) 策略,用于自动从最终显著图中分割 WBC 和 SL。我们在 ISIC-2016、ISIC-2017 和 SCISC 数据集上评估了我们提出的 Saliency-CCE,其表现优于有代表性的 SOD 和生物医学图像分割方法。我们的代码可在 https://github.com/zxg3017/Saliency-CCE 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验