一种基于双流特征融合和双域注意力的轻量级网络用于白细胞分割。

A lightweight network based on dual-stream feature fusion and dual-domain attention for white blood cells segmentation.

作者信息

Luo Yang, Wang Yingwei, Zhao Yongda, Guan Wei, Shi Hanfeng, Fu Chong, Jiang Hongyang

机构信息

School of Mathematics and Information Science, Anshan Normal University, Anshan, Liaoning, China.

School of Applied Technology, Anshan Normal University, Anshan, Liaoning, China.

出版信息

Front Oncol. 2023 Sep 4;13:1223353. doi: 10.3389/fonc.2023.1223353. eCollection 2023.

Abstract

INTRODUCTION

Accurate white blood cells segmentation from cytopathological images is crucial for evaluating leukemia. However, segmentation is difficult in clinical practice. Given the very large numbers of cytopathological images to be processed, diagnosis becomes cumbersome and time consuming, and diagnostic accuracy is also closely related to experts' experience, fatigue and mood and so on. Besides, fully automatic white blood cells segmentation is challenging for several reasons. There exists cell deformation, blurred cell boundaries, and cell color differences, cells overlapping or adhesion.

METHODS

The proposed method improves the feature representation capability of the network while reducing parameters and computational redundancy by utilizing the feature reuse of Ghost module to reconstruct a lightweight backbone network. Additionally, a dual-stream feature fusion network (DFFN) based on the feature pyramid network is designed to enhance detailed information acquisition. Furthermore, a dual-domain attention module (DDAM) is developed to extract global features from both frequency and spatial domains simultaneously, resulting in better cell segmentation performance.

RESULTS

Experimental results on ALL-IDB and BCCD datasets demonstrate that our method outperforms existing instance segmentation networks such as Mask R-CNN, PointRend, MS R-CNN, SOLOv2, and YOLACT with an average precision (AP) of 87.41%, while significantly reducing parameters and computational cost.

DISCUSSION

Our method is significantly better than the current state-of-the-art single-stage methods in terms of both the number of parameters and FLOPs, and our method has the best performance among all compared methods. However, the performance of our method is still lower than the two-stage instance segmentation algorithms. in future work, how to design a more lightweight network model while ensuring a good accuracy will become an important problem.

摘要

引言

从细胞病理学图像中准确分割白细胞对于评估白血病至关重要。然而,在临床实践中分割却很困难。鉴于需要处理的细胞病理学图像数量非常庞大,诊断变得繁琐且耗时,并且诊断准确性还与专家的经验、疲劳和情绪等密切相关。此外,全自动白细胞分割具有挑战性,原因有几个。存在细胞变形、细胞边界模糊、细胞颜色差异、细胞重叠或粘连。

方法

所提出的方法通过利用Ghost模块的特征重用重建轻量级骨干网络,提高了网络的特征表示能力,同时减少了参数和计算冗余。此外,设计了一种基于特征金字塔网络的双流特征融合网络(DFFN)来增强详细信息获取。此外,还开发了一种双域注意力模块(DDAM),以同时从频率和空间域提取全局特征,从而获得更好的细胞分割性能。

结果

在ALL-IDB和BCCD数据集上的实验结果表明,我们的方法优于现有实例分割网络,如Mask R-CNN、PointRend、MS R-CNN、SOLOv2和YOLACT,平均精度(AP)为87.41%,同时显著减少了参数和计算成本。

讨论

我们的方法在参数数量和浮点运算次数方面均明显优于当前最先进的单阶段方法,并且在所有比较方法中性能最佳。然而,我们方法的性能仍低于两阶段实例分割算法。在未来的工作中,如何在确保良好准确性的同时设计更轻量级的网络模型将成为一个重要问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92a3/10507331/56ee41762bb3/fonc-13-1223353-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索