Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina.
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China.
New Phytol. 2023 Apr;238(1):169-185. doi: 10.1111/nph.18723. Epub 2023 Jan 30.
Root hairs (RH) are excellent model systems for studying cell size and polarity since they elongate several hundred-fold their original size. Their tip growth is determined both by intrinsic and environmental signals. Although nutrient availability and temperature are key factors for a sustained plant growth, the molecular mechanisms underlying their sensing and downstream signaling pathways remain unclear. We use genetics to address the roles of the cell surface receptor kinase FERONIA (FER) and the nutrient sensing TOR Complex 1 (TORC) in RH growth. We identified that low temperature (10°C) triggers a strong RH elongation response in Arabidopsis thaliana involving FER and TORC. We found that FER is required to perceive limited nutrient availability caused by low temperature. FERONIA interacts with and activates TORC-downstream components to trigger RH growth. In addition, the small GTPase Rho of plants 2 (ROP2) is also involved in this RH growth response linking FER and TOR. We also found that limited nitrogen nutrient availability can mimic the RH growth response at 10°C in a NRT1.1-dependent manner. These results uncover a molecular mechanism by which a central hub composed by FER-ROP2-TORC is involved in the control of RH elongation under low temperature and nitrogen deficiency.
根毛(RH)是研究细胞大小和极性的极好模型系统,因为它们可以将原始大小延长数百倍。它们的尖端生长由内在和环境信号决定。尽管养分供应和温度是植物持续生长的关键因素,但它们的感应和下游信号通路的分子机制仍不清楚。我们使用遗传学来解决细胞表面受体激酶 FERONIA(FER)和营养感应 TOR 复合物 1(TORC)在 RH 生长中的作用。我们发现,低温(10°C)在拟南芥中引发强烈的 RH 伸长反应,涉及 FER 和 TORC。我们发现 FER 是感知低温引起的有限养分供应所必需的。FERONIA 与 TORC 下游成分相互作用并激活它们,以触发 RH 生长。此外,植物中的小 GTPase Rho2(ROP2)也参与了这种 RH 生长反应,连接 FER 和 TOR。我们还发现,有限的氮养分供应可以以 NRT1.1 依赖的方式模拟 10°C 时的 RH 生长反应。这些结果揭示了一个分子机制,即由 FER-ROP2-TORC 组成的中央枢纽参与了低温和氮缺乏下 RH 伸长的控制。