School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, 510006 Guangzhou, China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
Sci Total Environ. 2023 May 1;871:161863. doi: 10.1016/j.scitotenv.2023.161863. Epub 2023 Jan 28.
Thallium (Tl) is an extraordinarily toxic metal, which is usually present with Tl(I) and highly mobile in aquatic environment. Limited knowledge is available on the adsorption and isotopic variations of Tl(I) to Fe-(hydr)oxides. Herein, the adsorption behavior and mechanism of Tl(I) on representative Fe-(hydr)oxides, i.e. goethite, hematite, and ferrihydrite, were comparatively investigated kineticly and isothermally, additional to crystal structure modelling and Tl isotope composition (Tl/Tl). The results showed that ferrihydrite exhibited overall higher Tl(I) adsorption capacity (1.11-10.86 mg/kg) than goethite (0.21-1.83 mg/kg) and hematite (0.14-2.35 mg/kg), and adsorption by the three prevalent Fe-minerals presented strong pH and ionic strength dependence. The magnitude of Tl isotopic fractionation during Tl(I) adsorption to ferrihydrite (α ≈ 1.00022-1.00037) was smaller than previously observed fractionation between Mn oxides and aqueous Tl(I) (α ≈ 1.0002-1.0015). The notable difference is likely that whether oxidation of Tl(I) occurred during Tl adsorption to the mineral surfaces. This study found a small but detectable Tl isotopic fractionation during Tl(I) adsorption to ferrihydrite and heavier Tl isotope was slightly preferentially adsorbed on surface of ferrihydrite, which was attributed to the formation of inner-sphere complex between Tl and ≡Fe-OH. The findings offer a new understanding of the migration and fate of Tl/Tl during Tl(I) adsorption to Fe (hydr)oxides.
铊(Tl)是一种毒性极强的金属,通常以 Tl(I)的形式存在,并且在水生环境中具有高度的移动性。目前对于 Tl(I)在铁(氢)氧化物上的吸附和同位素变化的了解有限。本文通过动力学和等温实验比较研究了 Tl(I)在代表性的铁(氢)氧化物(即针铁矿、赤铁矿和水铁矿)上的吸附行为和机制,此外还进行了晶体结构建模和 Tl 同位素组成(Tl/Tl)研究。结果表明,水铁矿对 Tl(I)的吸附量(1.11-10.86mg/kg)普遍高于针铁矿(0.21-1.83mg/kg)和赤铁矿(0.14-2.35mg/kg),且三种常见的铁矿物的吸附均强烈依赖于 pH 值和离子强度。Tl(I)在水铁矿上的吸附过程中 Tl 同位素分馏程度较小(α≈1.00022-1.00037),低于之前观察到的 Mn 氧化物与水溶液中 Tl(I)之间的分馏程度(α≈1.0002-1.0015)。造成这种显著差异的原因可能是 Tl(I)在矿物表面吸附过程中是否发生了氧化。本研究发现,在 Tl(I)吸附到水铁矿的过程中存在小但可检测到的 Tl 同位素分馏,并且较重的 Tl 同位素在水铁矿表面上被略微优先吸附,这归因于 Tl 与≡Fe-OH 之间形成了内圈配合物。这些发现为理解 Tl(I)在铁(氢)氧化物上吸附过程中 Tl/Tl 的迁移和归宿提供了新的认识。