Computer Science, University of California, Los Angeles, CA, 90035, USA.
Radiation Oncology, University of California, Los Angeles, CA, 90035, USA.
Sci Rep. 2023 Jan 30;13(1):1696. doi: 10.1038/s41598-023-28669-y.
Prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/computed tomography (CT) is a molecular and functional imaging modality with better restaging accuracy over conventional imaging for detecting prostate cancer in men suspected of lymph node (LN) progression after definitive therapy. However, the availability of PSMA PET/CT is limited in both low-resource settings and for repeating imaging surveillance. In contrast, CT is widely available, cost-effective, and routinely performed as part of patient follow-up or radiotherapy workflow. Compared with the molecular activities, the morphological and texture changes of subclinical LNs in CT are subtle, making manual detection of positive LNs infeasible. Instead, we harness the power of artificial intelligence for automated LN detection on CT. We examined Ga-PSMA-11 PET/CT images from 88 patients (including 739 PSMA PET/CT-positive pelvic LNs) who experienced a biochemical recurrence after radical prostatectomy and presented for salvage radiotherapy with prostate-specific antigen < 1 ng/mL. Scans were divided into a training set (nPatient = 52, nNode = 400), a validation set (nPatient = 18, nNode = 143), and a test set (nPatient = 18, nNodes = 196). Using PSMA PET/CT as the ground truth and consensus pelvic LN clinical target volumes as search regions, a 2.5-dimensional (2.5D) Mask R-CNN based object detection framework was trained. The entire framework contained whole slice imaging pretraining, masked-out region fine-tuning, prediction post-processing, and "window bagging". Following an additional preprocessing step-pelvic LN clinical target volume extraction, our pipeline located positive pelvic LNs solely based on CT scans. Our pipeline could achieve a sensitivity of 83.351%, specificity of 58.621% out of 196 positive pelvic LNs from 18 patients in the test set, of which most of the false positives can be post-removable by radiologists. Our tool may aid CT-based detection of pelvic LN metastasis and triage patients most unlikely to benefit from the PSMA PET/CT scan.
前列腺特异性膜抗原(PSMA)正电子发射断层扫描(PET)/计算机断层扫描(CT)是一种分子和功能成像方式,与传统成像相比,在检测经过根治性治疗后疑似淋巴结(LN)进展的男性前列腺癌方面具有更高的分期准确性。然而,PSMA PET/CT 的可用性在资源有限的环境和重复成像监测方面均受到限制。相比之下,CT 广泛可用,具有成本效益,并且作为患者随访或放射治疗工作流程的一部分常规进行。与分子活性相比,CT 中亚临床 LN 的形态和纹理变化较为细微,使得手动检测阳性 LN 变得不可行。相反,我们利用人工智能的力量来实现 CT 上的自动 LN 检测。我们研究了 88 例患者(包括 739 例 PSMA PET/CT 阳性盆腔 LN)的 Ga-PSMA-11 PET/CT 图像,这些患者在根治性前列腺切除术后经历生化复发,且前列腺特异性抗原(PSA)<1ng/mL,需要进行挽救性放疗。扫描分为训练集(nPatient=52,nNode=400)、验证集(nPatient=18,nNode=143)和测试集(nPatient=18,nNode=196)。使用 PSMA PET/CT 作为地面实况,并将骨盆 LN 临床靶区的共识作为搜索区域,我们训练了一个基于 2.5 维(2.5D)Mask R-CNN 的目标检测框架。整个框架包含全切片成像预训练、屏蔽区域微调、预测后处理和“窗口袋装”。在进行了额外的预处理步骤——骨盆 LN 临床靶区提取后,我们的流水线仅根据 CT 扫描即可定位阳性骨盆 LN。我们的流水线在 18 名患者的 196 个阳性骨盆 LN 中,在测试集中的灵敏度为 83.351%,特异性为 58.621%,其中大多数假阳性可以由放射科医生移除。我们的工具可能有助于基于 CT 的骨盆 LN 转移检测,并对最不可能从 PSMA PET/CT 扫描中获益的患者进行分诊。