Suppr超能文献

环境和遗传因素对心血管事件影响的预测模型:在盐替代品人群中的开发。

A prediction model for the impact of environmental and genetic factors on cardiovascular events: development in a salt substitutes population.

机构信息

Department of Clinical Epidemiology and Evidence-Based Medicine, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang, Liaoning, China.

School of Public Health, China Medical University, Shenyang, Liaoning, China.

出版信息

J Transl Med. 2023 Jan 30;21(1):62. doi: 10.1186/s12967-023-03899-w.

Abstract

BACKGROUND

Cardiovascular disease (CVD) has evolved into a serious public health issue that demands the use of suitable methods to estimate the risk of the disease. As a result, in a sample of individuals who completed a 3-year low-sodium salt or conventional salt intervention in a hypertensive environment, we constructed a 13-year cardiovascular (CV) event risk prediction model with a 10-year follow-up.

METHODS

A Cox proportional hazards model was used to build a prediction model based on data from 306 participants who matched the inclusion criteria. Both the discriminating power and the calibration of the prediction models were assessed. The discriminative power of the prediction model was measured using the area under the curve (AUC). Brier scores and calibration plots were used to assess the prediction model's calibration. The model was internally validated using the tenfold cross-validation method. The nomogram served as a tool for visualising the model.

RESULTS

Among the 306 total individuals, there were 100 cases and 206 control. In the model, there were six predictors including age, smoking, LDL-C (low-density lipoprotein cholesterol), baseline SBP (systolic blood pressure), CVD (cardiovascular history), and CNV (genomic copy number variation) nsv483076. The fitted model has an AUC of 0.788, showing strong model discrimination, and a Brier score of 0.166, indicating that it was well-calibrated. According to the results of internal validation, the prediction model utilised in this study had a good level of repeatability. According to the model integrating the interaction of CNVs and baseline blood pressure, the effect of baseline SBP on CV events may be greater when nsv483076 was normal double copies than when nsv483076 was copy number variation.

CONCLUSIONS

The efficacy of risk prediction models for CV events that include environmental and genetic components is excellent, and they may be utilised as risk assessment tools for CV events in specific groups to offer a foundation for tailored intervention strategies.

摘要

背景

心血管疾病(CVD)已成为严重的公共卫生问题,需要使用合适的方法来评估疾病风险。因此,在一项在高血压环境中完成了 3 年低盐或常规盐干预的个体样本中,我们构建了一个 10 年随访的 13 年心血管(CV)事件风险预测模型。

方法

使用 Cox 比例风险模型,根据符合纳入标准的 306 名参与者的数据构建预测模型。评估预测模型的判别能力和校准。使用曲线下面积(AUC)评估预测模型的判别能力。使用 Brier 评分和校准图评估预测模型的校准。使用十折交叉验证法对内部分别验证模型。列线图用于可视化模型。

结果

在 306 名总个体中,有 100 例和 206 例对照。在模型中,有六个预测因子,包括年龄、吸烟、LDL-C(低密度脂蛋白胆固醇)、基线 SBP(收缩压)、CVD(心血管病史)和 CNV(基因组拷贝数变异)nsv483076。拟合模型的 AUC 为 0.788,显示出较强的模型判别能力,Brier 评分为 0.166,表明其校准良好。根据内部验证的结果,本研究中使用的预测模型具有良好的可重复性。根据整合 CNVs 和基线血压相互作用的模型,当 nsv483076 为正常双倍拷贝时,基线 SBP 对 CV 事件的影响可能大于 nsv483076 为拷贝数变异时。

结论

包含环境和遗传成分的 CV 事件风险预测模型的疗效很好,它们可作为特定人群 CV 事件风险评估工具,为量身定制的干预策略提供基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9855/9887817/36529065077e/12967_2023_3899_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验