Suppr超能文献

构建并验证结直肠癌患者口周相关皮肤损伤(PMASD)风险预测模型。

Construction and validation of the perioral moisture-related skin damage (PMASD) risk prediction model in patients with colorectal cancer.

机构信息

Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang, China.

Clinical Skills Training Center, Liaoning Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang, China.

出版信息

Int Wound J. 2023 Aug;20(6):2207-2214. doi: 10.1111/iwj.14098. Epub 2023 Jan 30.

Abstract

This study aims to analyse the risk factors of Peristomal Moisture-Associated Skin Damage (PMASD) in colorectal cancer patients, construct a prediction model, and verify its effect. A total of 375 patients who underwent rectal cancer stoma surgery at the Liaoning Cancer Hospital between January and December 2020 were selected according to the inclusion and exclusion criteria. The clinical data were retrospectively analysed for modelling and internal validation (modelling group). According to the same criteria, the clinical data of 242 patients from January and June 2021 were retrospectively analysed for external validation (validation group). Baseline patient data were recorded. Patients in the modelling group were divided into those with and without PMASD based on the occurrence of PMASD during hospitalisation. Logistic regression analysis was used to examine the factors of PMASD and the PMASD nomogram model of colorectal cancer. Internal model validation was performed with the Bootstrap method, using the ROC and H-L goodness of fit test to evaluate the differentiation and calibration of the model. Last, external validation of the model was performed. In the modelling group, 212 patients with colorectal cancer developed PMASD. According to the results of the logistic regression analysis, high fasting plasma glucose and fasting blood glucose (FPG), a history of radiotherapy, the height of the stoma opening (i.e., flat or lower than the skin surface), and skin folds around the stoma are risk factors for PMASD (OR > 1, P < 0.05). The stool shaping and colostomy are protective factors for PMASD in patients with colorectal cancer (OR < 1, P < 0.05). To establish the prediction of colorectal cancer, patient development of PMASD line, graph model, and internal verification was carried out using the Bootstrap method: H-L test P = 0.846, area under curve, area under the ROC curve (0 > 0.75, 95% CI: 0.778-0, AUC = 0.820). The external validation included the H-L test (P = 0.137, AUC [0.862] > 0.75, 95% CI: 0.815-0.909), with the maximum value of the Youden index as the best cut-off value for the model. The ROC curve had a Youden index of 0.559, a sensitivity of 0.877, and a specificity of 0.657. The prompt model area showed good calibration and discrimination. The PMASD in patients with colorectal cancer is affected by defecation traits, the stoma opening height, stoma type, FPG, skin folds around the stoma, and previous radiotherapy history. The nomogram model can provide an effective means to reasonably predict the risk of PMASD in patients with colorectal cancer.

摘要

本研究旨在分析结直肠癌患者造口周围皮肤湿性损伤(PMASD)的危险因素,构建预测模型并验证其效果。根据纳入和排除标准,选择 2020 年 1 月至 12 月在辽宁省肿瘤医院接受直肠癌造口手术的 375 例患者。回顾性分析临床资料进行建模和内部验证(建模组)。根据相同的标准,回顾性分析 2021 年 1 月至 6 月的 242 例患者的临床资料进行外部验证(验证组)。记录基线患者数据。根据住院期间是否发生 PMASD,将建模组中的患者分为发生和未发生 PMASD 两组。使用 logistic 回归分析检查 PMASD 的因素,并建立结直肠癌的 PMASD 列线图模型。采用 Bootstrap 方法进行内部模型验证,使用 ROC 和 H-L 拟合优度检验评估模型的区分度和校准度。最后,对模型进行外部验证。在建模组中,212 例结直肠癌患者发生 PMASD。根据 logistic 回归分析的结果,高空腹血糖和空腹血糖(FPG)、放疗史、造口开口高度(即平坦或低于皮肤表面)以及造口周围皮肤褶皱是 PMASD 的危险因素(OR>1,P<0.05)。粪便成型和结肠造口术是结直肠癌患者 PMASD 的保护因素(OR<1,P<0.05)。为建立结直肠癌患者 PMASD 预测模型,采用 Bootstrap 方法建立患者发展 PMASD 线、图表模型,并进行内部验证:H-L 检验 P=0.846,ROC 曲线下面积,ROC 曲线下面积(0>0.75,95%CI:0.778-0,AUC=0.820)。外部验证包括 H-L 检验(P=0.137,AUC[0.862]>0.75,95%CI:0.815-0.909),模型最佳截断值为约登指数最大值。ROC 曲线的约登指数为 0.559,灵敏度为 0.877,特异性为 0.657。提示模型区具有良好的校准度和区分度。结直肠癌患者的 PMASD 受排便特征、造口开口高度、造口类型、FPG、造口周围皮肤褶皱和既往放疗史的影响。列线图模型可以为预测结直肠癌患者 PMASD 的风险提供有效的手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf4/10333012/627a5d05f7d1/IWJ-20-2207-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验