Suppr超能文献

一些广义分数阶微分方程在乌拉姆-海尔斯-拉西亚斯意义下的稳定性

Stability of some generalized fractional differential equations in the sense of Ulam-Hyers-Rassias.

作者信息

Makhlouf Abdellatif Ben, El-Hady El-Sayed, Arfaoui Hassen, Boulaaras Salah, Mchiri Lassaad

机构信息

Mathematics Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia.

Department of Mathematics, College of Sciences and Arts, ArRass, Qassim University, Buraydah, Saudi Arabia.

出版信息

Bound Value Probl. 2023;2023(1):8. doi: 10.1186/s13661-023-01695-5. Epub 2023 Jan 26.

Abstract

In this paper, we investigate the existence and uniqueness of fractional differential equations (FDEs) by using the fixed-point theory (FPT). We discuss also the Ulam-Hyers-Rassias (UHR) stability of some generalized FDEs according to some classical mathematical techniques and the FPT. Finally, two illustrative examples are presented to show the validity of our results.

摘要

在本文中,我们运用不动点理论(FPT)研究分数阶微分方程(FDEs)的存在性与唯一性。我们还根据一些经典数学技巧和不动点理论讨论了某些广义分数阶微分方程的乌拉姆 - 海尔斯 - 拉西亚斯(UHR)稳定性。最后,给出两个示例以说明我们结果的有效性。

相似文献

7
Generalized -Hyers-Ulam-Rassias Stability of Impulsive Difference Equations.广义-Hyers-Ulam-Rassias 脉冲差分方程稳定性。
Comput Intell Neurosci. 2022 Sep 15;2022:9462424. doi: 10.1155/2022/9462424. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验