Jayaswal Ruchi, Dixit Manish
Dept. of CSE/IT MITS Gwalior India.
Dept. of CSE/IT/AIML Symbiosis Institute of Technology Pune India.
Concurr Comput. 2022 Dec 25;34(28):e7394. doi: 10.1002/cpe.7394. Epub 2022 Nov 1.
A new coronavirus has caused a pandemic crisis around the globe. According to the WHO, this is an infectious illness that spreads from person to person. Therefore, the only way to avoid this infection is to take precautions. Wearing a mask is the most critical COVID-19 protection method because it prevents the virus from spreading from an infected person to a healthy one. This study reflects a deep learning method to create a system for detecting Face Masks. The paper proposes a unique FMDRT (Face Mask Dataset in Real-Time) dataset to determine whether a person is wearing a mask or not. The RFMD and Face Mask datasets are also taken from the internet to evaluate the performance of the proposed method. The CLAHE preprocessing method is employed to enhance the image quality, then resizing and Image augmentation techniques are used to convert it into a standard format and increase the size of the dataset, respectively. The pretrained Caffe face detector model is used to detect the faces, and then the lightweight transfer learning-based Xception model is applied for the feature extraction process. This paper recommended a novel model that is, CL-SSDXcept to distinguish the Face Mask or no mask images. However, accession with the MobileNetV2, VGG16, VGG19, and InceptionV3 models with different hyperparameter settings has been tested on the FMDRT dataset. We have also compared the results of the synthesized dataset FMDRT to the existing Face Mask datasets. The experimental results attained 98% test accuracy on the suggested dataset 'FMDRT' using the CL-SSDXcept method. The empirical findings have been reported at 50 iterations with tuned hyperparameter values with an average accuracy 98% and a loss of 0.05.
一种新型冠状病毒在全球引发了大流行危机。根据世界卫生组织的说法,这是一种人际传播的传染病。因此,避免这种感染的唯一方法是采取预防措施。佩戴口罩是预防新冠病毒最关键的方法,因为它可以防止病毒从感染者传播到健康人身上。本研究反映了一种深度学习方法,用于创建一个检测口罩的系统。该论文提出了一个独特的FMDRT(实时口罩数据集)数据集,以确定一个人是否佩戴口罩。还从互联网获取了RFMD和口罩数据集,以评估所提出方法的性能。采用CLAHE预处理方法来提高图像质量,然后分别使用图像缩放和图像增强技术将其转换为标准格式并增加数据集的大小。使用预训练的Caffe人脸检测器模型来检测人脸,然后应用基于轻量级迁移学习的Xception模型进行特征提取过程。本文推荐了一种新颖的模型,即CL-SSDXcept,用于区分戴口罩和不戴口罩的图像。然而,已在FMDRT数据集上测试了与具有不同超参数设置的MobileNetV2、VGG16、VGG19和InceptionV3模型的结合。我们还将合成数据集FMDRT的结果与现有的口罩数据集进行了比较。使用CL-SSDXcept方法在建议的数据集“FMDRT”上获得的实验结果达到了98%的测试准确率。在50次迭代中报告了实证结果,超参数值经过调整,平均准确率为98%,损失为0.05。