Suppr超能文献

基于人工智能的口罩检测系统:应对新冠疫情的一个简单方案。

AI-based face mask detection system: a straightforward proposition to fight with Covid-19 situation.

作者信息

Jayaswal Ruchi, Dixit Manish

机构信息

Department of CSE, MITS, Gwalior, MP India.

出版信息

Multimed Tools Appl. 2023;82(9):13241-13273. doi: 10.1007/s11042-022-13697-z. Epub 2022 Sep 8.

Abstract

The whole world is suffering from a novel coronavirus, which has become an epidemic. According to a World Health Organization report, this is a communicable disease, i.e., it transfers from an infected person to a healthy person. Therefore, wearing a mask is the most important precaution to protect from COVID-19. This paper presented a deep learning-based approach to design a Face Mask Detection framework to predict whether a person is wearing a mask or not. The proposed method uses a Single Shot Multibox detector as a face detector model and a deep Inception V3 architecture (SSDIV3) to extract the pertinent features of images and discriminate them in mask and without masks labels. Optimizing the SSDIV3 approach using different modeling parameters is a genuine contribution of this work. In addition to this, the system is tested and analyzed on VGG16, VGG19, Xception, Mobilenet V2 models at different modeling parameters. Furthermore, two synthesized novel Face Mask Datasets are introduced containing diversified masks (2d_printed, 3d_printed, handkerchief, transparent, natural-looking mask appearance masks) and unmask images of humans collected in outdoor and indoor environments such as parks, homes, laboratories. The experiment outcomes demonstrate that the proposed system has achieved an accuracy of 98% on the synthesized benchmark datasets, which comparatively outperforms other state-of-art methods and datasets in a real-time environment.

摘要

全球正遭受新型冠状病毒的侵袭,该病毒已引发疫情。根据世界卫生组织的报告,这是一种传染病,即它会从感染者传播至健康人。因此,佩戴口罩是预防新冠病毒的最重要预防措施。本文提出了一种基于深度学习的方法来设计一个口罩检测框架,以预测一个人是否佩戴了口罩。所提出的方法使用单阶段多框检测器作为人脸检测器模型,并采用深度Inception V3架构(SSDIV3)来提取图像的相关特征,并将它们区分为佩戴口罩和未佩戴口罩的标签。使用不同的建模参数优化SSDIV3方法是这项工作的一项重要贡献。除此之外,该系统还在不同建模参数下的VGG16、VGG19、Xception、Mobilenet V2模型上进行了测试和分析。此外,还引入了两个合成的新型口罩数据集,其中包含多种口罩(二维打印、三维打印、手帕、透明、外观自然的口罩)以及在公园、家庭、实验室等室外和室内环境中收集的人类未佩戴口罩的图像。实验结果表明,所提出的系统在合成基准数据集上达到了98%的准确率,在实时环境中相对优于其他现有方法和数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38ef/9454394/8ba75781d5a5/11042_2022_13697_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验