HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary.
Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
Mol Biol Evol. 2023 Feb 3;40(2). doi: 10.1093/molbev/msad020.
Bacterial evolution of antibiotic resistance frequently has deleterious side effects on microbial growth, virulence, and susceptibility to other antimicrobial agents. However, it is unclear how these trade-offs could be utilized for manipulating antibiotic resistance in the clinic, not least because the underlying molecular mechanisms are poorly understood. Using laboratory evolution, we demonstrate that clinically relevant resistance mutations in Escherichia coli constitutively rewire a large fraction of the transcriptome in a repeatable and stereotypic manner. Strikingly, lineages adapted to functionally distinct antibiotics and having no resistance mutations in common show a wide range of parallel gene expression changes that alter oxidative stress response, iron homeostasis, and the composition of the bacterial outer membrane and cell surface. These common physiological alterations are associated with changes in cell morphology and enhanced sensitivity to antimicrobial peptides. Finally, the constitutive transcriptomic changes induced by resistance mutations are largely distinct from those induced by antibiotic stresses in the wild type. This indicates a limited role for genetic assimilation of the induced antibiotic stress response during resistance evolution. Our work suggests that diverse resistance mutations converge on similar global transcriptomic states that shape genetic susceptibility to antimicrobial compounds.
细菌对抗生素耐药性的进化经常对微生物的生长、毒力和对其他抗菌药物的敏感性产生有害的副作用。然而,目前尚不清楚如何利用这些权衡来操纵临床中的抗生素耐药性,尤其是因为其潜在的分子机制尚不清楚。通过实验室进化,我们证明了大肠杆菌中与临床相关的耐药性突变以可重复和刻板的方式恒定地重新布线转录组的很大一部分。引人注目的是,适应功能不同的抗生素且没有共同耐药突变的谱系表现出广泛的平行基因表达变化,这些变化改变了氧化应激反应、铁稳态以及细菌外膜和细胞表面的组成。这些常见的生理变化与细胞形态的变化和对抗菌肽的敏感性增加有关。最后,耐药性突变诱导的组成型转录组变化与野生型中抗生素应激诱导的变化有很大的不同。这表明在耐药性进化过程中,诱导的抗生素应激反应的遗传同化作用的作用有限。我们的工作表明,不同的耐药性突变趋同于相似的全局转录组状态,这些状态塑造了对抗菌化合物的遗传易感性。