Suppr超能文献

通过共聚焦拉曼显微镜的深入研究,开发出通过顺序迈克尔加成反应将 DNA 稳定固定在硅表面上的方法。

Stable Immobilization of DNA to Silica Surfaces by Sequential Michael Addition Reactions Developed with Insights from Confocal Raman Microscopy.

机构信息

Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 United States.

出版信息

Anal Chem. 2023 Feb 14;95(6):3499-3506. doi: 10.1021/acs.analchem.2c05594. Epub 2023 Jan 31.

Abstract

The immobilization of DNA to surfaces is required for numerous biosensing applications related to the capture of target DNA sequences, proteins, or small-molecule analytes from solution. For these applications to be successful, the chemistry of DNA immobilization should be efficient, reproducible, and stable and should allow the immobilized DNA to adopt a secondary structure required for association with its respective target molecule. To develop and characterize surface immobilization chemistry to meet this challenge, it is invaluable to have a quantitative, surface-sensitive method that can report the interfacial chemistry at each step, while also being capable of determining the structure, stability, and activity of the tethered DNA product. In this work, we develop a method to immobilize DNA to silica, glass, or other oxide surfaces by carrying out the reactions in porous silica particles. Due to the high specific surface area of porous silica, the local concentrations of surface-immobilized molecules within the particle are sufficiently high that interfacial chemistry can be monitored at each step of the process with confocal Raman microscopy, providing a unique capability to assess the molecular composition, structure, yield, and surface coverage of these reactions. We employ this methodology to investigate the steps for immobilizing thiolated-DNA to thiol-modified silica surfaces through sequential Michael addition reactions with the cross-linker 1,4-phenylene-bismaleimide. A key advantage of employing a phenyl-bismaleimide over a comparable alkyl coupling reagent is the efficient conversion of the initial phenyl-thiosuccinimide to a more stable succinamic acid thioether linkage. This transformation was confirmed by in situ Raman spectroscopy measurements, and the resulting succinamic acid thioether product exhibited greater than 95% retention of surface-immobilized DNA after 12 days at room temperature in aqueous buffer. Confocal Raman microscopy was also used to assess the conformational freedom of surface-immobilized DNA by comparing the structure of a 23-mer DNA hairpin sequence under duplex-forming and unfolding conditions. We find that the immobilized DNA hairpin can undergo reversible intramolecular duplex formation based on the changes in frequencies and intensities of the phosphate backbone and base-specific vibrational modes that are informative of the hybridization state of DNA.

摘要

将 DNA 固定在表面上是许多与从溶液中捕获目标 DNA 序列、蛋白质或小分子分析物相关的生物传感应用所必需的。为了使这些应用取得成功,DNA 固定化的化学性质应该高效、可重复且稳定,并应允许固定化的 DNA 采用与其各自靶分子结合所需的二级结构。为了开发和表征满足这一挑战的表面固定化化学,拥有一种能够报告每个步骤界面化学的定量、表面敏感的方法是非常宝贵的,同时还能够确定固定化 DNA 产物的结构、稳定性和活性。在这项工作中,我们通过在多孔硅粒子中进行反应,开发了一种将 DNA 固定在硅、玻璃或其他氧化物表面的方法。由于多孔硅的比表面积高,粒子内表面固定化分子的局部浓度足够高,因此可以使用共焦拉曼显微镜在过程的每一步监测界面化学,从而提供一种独特的能力来评估这些反应的分子组成、结构、产率和表面覆盖率。我们采用这种方法研究了通过与交联剂 1,4-亚苯基-双马来酰亚胺的顺序迈克尔加成反应将巯基化 DNA 固定在巯基化硅表面上的步骤。与类似的烷基偶联试剂相比,使用苯并马来酰亚胺的一个关键优势是能够有效地将初始苯并硫代琥珀酰亚胺转化为更稳定的琥珀酰胺硫醚键。这一转化通过原位拉曼光谱测量得到证实,所得的琥珀酰胺硫醚产物在室温下在水性缓冲液中放置 12 天后仍保留超过 95%的表面固定化 DNA。共聚焦拉曼显微镜还用于通过比较双链形成和解折叠条件下 23 -mer DNA 发夹序列的结构来评估表面固定化 DNA 的构象自由度。我们发现,固定化的 DNA 发夹可以根据磷酸骨架和碱基特异性振动模式的频率和强度的变化进行可逆的分子内双链形成,这些变化模式提供了 DNA 杂交状态的信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验