Suppr超能文献

基于混合Copula函数的径流与输沙量联合概率分析

Joint probability analysis of streamflow and sediment load based on hybrid copula.

作者信息

Yang Xi, Chen Zhihe, Qin Min

机构信息

School of Civil Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.

Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.

出版信息

Environ Sci Pollut Res Int. 2023 Apr;30(16):46489-46502. doi: 10.1007/s11356-023-25344-7. Epub 2023 Jan 31.

Abstract

Statistical analysis of streamflow and sediment is very important for integrated watershed management and the design of water infrastructure, especially in silt-rich rivers. Here, we propose a bivariate joint distribution framework based on nonparametric kernel density estimation (KDE) and a hybrid copula function to describe the complex streamflow-sediment dependent structure. In this framework, the non-parametric KDE is used to fit the marginal distribution function of streamflow and sediment variables, and then the hybrid copula function is constructed by using the linear combination of Clayton, Frank, and Gumbel copulas, and compared with five commonly used single copulas (Clayton, Frank, Gumbel, Gaussian, and t). We use the Jinsha River Basin (JRB) in the Yangtze River's (JR) upper reaches to verify the proposed method. The results show the following: (1) Compared with the gamma distribution (Gamma) and generalized extreme value (GEV) distribution of parameters, the marginal distribution function of streamflow and sediment variables can be effectively obtained based on nonparametric KDE. (2) Compared with the single copula, the hybrid copula function more fully reflects the complex dependent structure of streamflow and sediment variables. (3) Compared with the best single copula, the precision of return period based on hybrid copula can be increased by 7.41%. In addition, the synchronous probability of streamflow and sediment in JRB is 0.553, and the asynchronous probability of streamflow and sediment is 0.447. This study can not only improve the accuracy of streamflow and sediment statistical analysis in JRB, but also provide a useful framework for other bivariate joint probability analysis.

摘要

径流和泥沙的统计分析对于流域综合管理和水利基础设施设计非常重要,尤其是在多沙河流中。在此,我们提出了一种基于非参数核密度估计(KDE)和混合Copula函数的二元联合分布框架,以描述径流-泥沙复杂的相依结构。在该框架中,非参数KDE用于拟合径流和泥沙变量的边缘分布函数,然后通过Clayton、Frank和Gumbel Copula函数的线性组合构建混合Copula函数,并与五种常用的单一Copula函数(Clayton、Frank、Gumbel、高斯和t)进行比较。我们以长江上游的金沙江流域(JRB)为例验证所提方法。结果表明:(1)与参数的伽马分布(Gamma)和广义极值(GEV)分布相比,基于非参数KDE能有效获得径流和泥沙变量的边缘分布函数。(2)与单一Copula函数相比,混合Copula函数更充分地反映了径流和泥沙变量的复杂相依结构。(3)与最佳单一Copula函数相比,基于混合Copula函数的重现期精度可提高7.41%。此外,金沙江流域径流和泥沙的同步概率为0.553,异步概率为0.447。本研究不仅可以提高金沙江流域径流和泥沙统计分析的精度,还可为其他二元联合概率分析提供有用的框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验