Department of Biochemistry, University of Washington, 98195-7350 Seattle, WA.
Department of Chemistry, University of Washington, 98195-1700 Seattle, WA.
Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2213765120. doi: 10.1073/pnas.2213765120. Epub 2023 Jan 31.
Small heat-shock proteins (sHSPs) are a widely expressed family of ATP-independent molecular chaperones that are among the first responders to cellular stress. Mechanisms by which sHSPs delay aggregation of client proteins remain undefined. sHSPs have high intrinsic disorder content of up to ~60% and assemble into large, polydisperse homo- and hetero-oligomers, making them challenging structural and biochemical targets. Two sHSPs, HSPB4 and HSPB5, are present at millimolar concentrations in eye lens, where they are responsible for maintaining lens transparency over the lifetime of an organism. Together, HSPB4 and HSPB5 compose the hetero-oligomeric chaperone known as α-crystallin. To identify the determinants of sHSP function, we compared the effectiveness of HSPB4 and HSPB5 homo-oligomers and HSPB4/HSPB5 hetero-oligomers in delaying the aggregation of the lens protein γD-crystallin. In chimeric versions of HSPB4 and HSPB5, chaperone activity tracked with the identity of the 60-residue disordered N-terminal regions (NTR). A short 10-residue stretch in the middle of the NTR ("Critical sequence") contains three residues that are responsible for high HSPB5 chaperone activity toward γD-crystallin. These residues affect structure and dynamics throughout the NTR. Abundant interactions involving the NTR Critical sequence reveal it to be a hub for a network of interactions within oligomers. We propose a model whereby the NTR critical sequence influences local structure and NTR dynamics that modulate accessibility of the NTR, which in turn modulates chaperone activity.
小分子热休克蛋白 (sHSPs) 是一种广泛表达的 ATP 非依赖性分子伴侣家族,是细胞应激的首批响应者之一。sHSPs 延迟客户蛋白聚集的机制尚不清楚。sHSPs 具有高达~60%的固有无序含量,并组装成大的、多分散的同型和异型寡聚物,这使得它们成为具有挑战性的结构和生化靶标。两种 sHSPs,HSPB4 和 HSPB5,在眼睛晶状体中以毫摩尔浓度存在,在生物体的整个生命周期中负责维持晶状体的透明度。HSPB4 和 HSPB5 共同组成了称为 α-晶状体蛋白的异型寡聚伴侣。为了确定 sHSP 功能的决定因素,我们比较了 HSPB4 和 HSPB5 同源寡聚体以及 HSPB4/HSPB5 异型寡聚体在延迟晶状体蛋白 γD-晶状体蛋白聚集方面的效果。在 HSPB4 和 HSPB5 的嵌合版本中,伴侣活性与 60 残基无序 N 端区域 (NTR) 的身份相关。NTR 中间的一个 10 残基的短片段(“关键序列”)包含三个负责 HSPB5 对 γD-晶状体蛋白具有高伴侣活性的残基。这些残基影响整个 NTR 的结构和动力学。大量涉及 NTR 关键序列的相互作用表明它是寡聚体内部相互作用网络的中心。我们提出了一个模型,其中 NTR 关键序列影响局部结构和 NTR 动力学,从而调节 NTR 的可及性,进而调节伴侣活性。