Suppr超能文献

微需氧条件下大肠杆菌稳定期非氧化糖酵解的功能评估

Functional evaluation of non-oxidative glycolysis in Escherichia coli in the stationary phase under microaerobic conditions.

作者信息

Miyoshi Kenta, Kawai Ryutaro, Niide Teppei, Toya Yoshihiro, Shimizu Hiroshi

机构信息

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.

出版信息

J Biosci Bioeng. 2023 Apr;135(4):291-297. doi: 10.1016/j.jbiosc.2023.01.002. Epub 2023 Jan 29.

Abstract

In microbial bioproduction, CO emissions via pyruvate dehydrogenase in the Embden-Meyerhof pathway, which converts glucose to acetyl-CoA, is one of the challenges for enhancing carbon yield. The synthetic non-oxidative glycolysis (NOG) pathway transforms glucose into three acetyl-CoA molecules without CO emission, making it an attractive module for metabolic engineering. Because the NOG pathway generates no ATP and NADH, it is expected to use a resting cell reaction. Therefore, it is important to characterize the feasibility of the NOG pathway during stationary phase. Here, we experimentally evaluated the in vivo metabolic flow of the NOG pathway in Escherichia coli. An engineered strain was constructed by introducing phosphoketolase from Bifidobacterium adolescentis into E. coli and by deleting competitive reactions. When the strain was cultured in magnesium-starved medium under microaerobic conditions, the carbon yield of acetate, an end-product of the NOG pathway, was six times higher than that of the control strain harboring an empty vector. Based on the mass balance constraints, the NOG flux was estimated to be between 2.89 and 4.64 mmol g h, suggesting that the engineered cells can convert glucose through the NOG pathway with enough activity for bioconversion. Furthermore, to expand the application potential of NOG pathway-implemented strains, the theoretical maximum yields of various useful compounds were calculated using flux balance analysis. This suggests that the theoretical maximum yields of not only acetate but also lactam compounds can be increased by introducing the NOG pathway. This information will help in future applications of the NOG pathway.

摘要

在微生物生物生产中,通过糖酵解途径(Embden-Meyerhof pathway)中的丙酮酸脱氢酶将葡萄糖转化为乙酰辅酶A时会产生CO排放,这是提高碳产量面临的挑战之一。合成的非氧化糖酵解(NOG)途径可将葡萄糖转化为三个乙酰辅酶A分子而不产生CO排放,使其成为代谢工程中一个有吸引力的模块。由于NOG途径不产生ATP和NADH,因此有望用于静息细胞反应。因此,表征NOG途径在稳定期的可行性很重要。在此,我们通过实验评估了大肠杆菌中NOG途径的体内代谢流。通过将青春双歧杆菌的磷酸酮醇酶引入大肠杆菌并删除竞争性反应,构建了一种工程菌株。当该菌株在微需氧条件下于缺镁培养基中培养时,NOG途径的终产物乙酸盐的碳产量比携带空载体的对照菌株高六倍。基于质量平衡约束,估计NOG通量在2.89至4.64 mmol g h之间,这表明工程细胞可以通过NOG途径转化葡萄糖,具有足够的生物转化活性。此外,为了扩大实施NOG途径的菌株的应用潜力,使用通量平衡分析计算了各种有用化合物的理论最大产量。这表明,通过引入NOG途径,不仅乙酸盐的理论最大产量,而且内酰胺化合物的理论最大产量都可以提高。这些信息将有助于NOG途径的未来应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验