Suppr超能文献

利用 mBFP 鉴定 中戊糖磷酸途径中的一种新型 NADPH 生成反应。

Identification of a novel NADPH generation reaction in the pentose phosphate pathway in using mBFP.

机构信息

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan.

出版信息

J Bacteriol. 2024 Nov 21;206(11):e0027624. doi: 10.1128/jb.00276-24. Epub 2024 Oct 10.

Abstract

NADPH is a redox cofactor that drives the anabolic reactions. Although major NADPH generation reactions have been identified in , some minor reactions have not been identified. In the present study, we explored novel NADPH generation reactions by monitoring the fluorescence dynamics after the addition of carbon sources to starved cells, using a metagenome-derived blue fluorescent protein (mBFP) as an intracellular NADPH reporter. Perturbation analyses were performed on a glucose-6-phosphate isomerase (PGI) deletion strain and its parental strain. Interestingly, mBFP fluorescence increased not only in the parental strain but also in the ΔPGI strain after the addition of xylose. Because the ΔPGI strain cannot metabolize xylose through the oxidative pentose phosphate pathway, this suggests that an unexpected NADPH generation reaction contributes to an increase in fluorescence. To unravel this mystery, we deleted the NADPH generation enzymes including transhydrogenase, isocitrate dehydrogenase, NADP-dependent malic enzyme, glucose-6-phosphate dehydrogenase (G6PDH), and 6-phosphogluconate dehydrogenase (6PGDH) in the ΔPGI strain, and revealed that G6PDH and 6PGDH contribute to an increase in fluorescence under xylose conditions. assays using purified enzymes showed that G6PDH can produce NADPH using erythrose-4-phosphate (E4P) as a substitute for glucose-6-phosphate. Because the (0.65 mM) for E4P was much higher than the reported intracellular E4P concentrations in , little E4P must be metabolized through this bypass in the parental strain. However, the flux would increase when E4P accumulates in the cells owing to genetic modifications. This finding provides a metabolic engineering strategy for generating NADPH to produce useful compounds using xylose as a carbon source.IMPORTANCEBecause NADPH is consumed during the synthesis of various useful compounds, enhancing NADPH regeneration is highly desirable in metabolic engineering. In this study, we explored novel NADPH generation reactions in using a fluorescent NADPH reporter and found that glucose-6-phosphate dehydrogenase can produce NADPH using erythrose-4-phosphate as a substrate under xylose conditions. Xylose is an abundant sugar in nature and is an attractive carbon source for bioproduction. Therefore, this finding contributes to novel pathway engineering strategies using a xylose carbon source in to produce useful compounds that consume NADPH for their synthesis.

摘要

NADPH 是一种氧化还原辅助因子,它驱动合成反应。尽管已经确定了 中主要的 NADPH 生成反应,但仍有一些次要反应尚未确定。在本研究中,我们使用来源于宏基因组的蓝色荧光蛋白 (mBFP) 作为细胞内 NADPH 报告物,通过监测饥饿细胞中添加碳源后的荧光动力学,来探索新的 NADPH 生成反应。我们对葡萄糖-6-磷酸异构酶 (PGI) 缺失菌株及其亲本菌株进行了扰动分析。有趣的是,在添加木糖后,mBFP 荧光不仅在亲本菌株中增加,而且在 ΔPGI 菌株中也增加。由于 ΔPGI 菌株不能通过氧化戊糖磷酸途径代谢木糖,这表明一种意想不到的 NADPH 生成反应导致荧光增加。为了解开这个谜团,我们在 ΔPGI 菌株中敲除了包括转氢酶、异柠檬酸脱氢酶、NADP 依赖性苹果酸酶、葡萄糖-6-磷酸脱氢酶 (G6PDH) 和 6-磷酸葡萄糖酸脱氢酶 (6PGDH) 在内的 NADPH 生成酶,并揭示 G6PDH 和 6PGDH 在木糖条件下有助于荧光增加。使用纯化酶的 测定表明,G6PDH 可以使用赤藓糖-4-磷酸 (E4P) 代替葡萄糖-6-磷酸生成 NADPH。由于 E4P 的 (0.65mM) 远高于文献报道的 中的细胞内 E4P 浓度,因此在亲本菌株中,必须通过这种旁路代谢很少量的 E4P。然而,由于遗传修饰,当 E4P 在细胞中积累时,通量会增加。这一发现为利用木糖作为碳源生产有用化合物提供了一种产生 NADPH 的代谢工程策略。

重要性

由于 NADPH 在各种有用化合物的合成过程中被消耗,因此在代谢工程中增强 NADPH 的再生是非常理想的。在这项研究中,我们使用荧光 NADPH 报告物在 中探索了新的 NADPH 生成反应,发现葡萄糖-6-磷酸脱氢酶可以在木糖条件下使用赤藓糖-4-磷酸作为底物生成 NADPH。木糖是自然界中丰富的糖,是生物生产的有吸引力的碳源。因此,这一发现为利用木糖作为碳源生产有用化合物的途径工程策略提供了新的思路,这些化合物的合成需要 NADPH 作为其合成的底物。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验