Suppr超能文献

SARS-CoV-2 利用非结构蛋白 16 逃避 IFIT1 和 IFIT3 的限制。

SARS-CoV-2 Uses Nonstructural Protein 16 To Evade Restriction by IFIT1 and IFIT3.

机构信息

Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA.

Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA.

出版信息

J Virol. 2023 Feb 28;97(2):e0153222. doi: 10.1128/jvi.01532-22. Epub 2023 Feb 1.

Abstract

Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'--methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'--MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both and , using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive than wild-type SARS-CoV-2 to type I interferon (IFN-I) . Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'--methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, an MTase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment and attenuates viral replication. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a target for future antiviral therapies. Similar to other coronaviruses, disruption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP16 function attenuates viral replication in a type I interferon-dependent manner. , our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1 but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'--methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.

摘要

了解严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 固有免疫逃避的分子基础对于设计下一波治疗方法至关重要。在这里,我们研究了 SARS-CoV-2 的非结构蛋白 16 (NSP16) 在感染和发病机制中的作用。NSP16 是一种核糖核苷酸 2'-O-甲基转移酶 (MTase),作为加帽过程的一部分,催化将甲基转移到 mRNA 上。基于其他 CoV 的观察结果,我们假设 NSP16 2'-MTase 功能可保护 SARS-CoV-2 免受帽状感应宿主限制。因此,我们设计了一种带有突变的 SARS-CoV-2,该突变破坏了 NSP16 活性位点中的保守残基。随后,我们使用 SARS-CoV-2 感染的仓鼠模型表明,这种突变体在 和 中均减弱。从机制上讲,我们证实 NSP16 突变体比野生型 SARS-CoV-2 对 I 型干扰素 (IFN-I) 更敏感。此外,沉默 IFIT1 或 IFIT3,即感应缺乏 2'-甲基化的 IFN 刺激基因,部分恢复了 NSP16 突变体的适应性。最后,我们证明了 sinefungin,一种结合 NSP16 催化位点的 MTase 抑制剂,可使野生型 SARS-CoV-2 对 IFN-I 治疗敏感并减弱病毒复制。总的来说,我们的发现强调了 SARS-CoV-2 NSP16 在逃避宿主固有免疫中的重要性,并为未来的抗病毒治疗提供了一个潜在的靶点。与其他冠状病毒类似,破坏严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) NSP16 功能以依赖 I 型干扰素的方式减弱病毒复制。与之前的研究一致,我们的结果表明,在仓鼠肺部晚期疾病和病毒复制减少,但 NSP16 突变体 (dNSP16) 在呼吸道早期滴度降低。此外,我们的结果证实了 IFIT1 的作用,但也证明了 IFIT3 在介导 dNSP16 衰减中的必要性。最后,我们表明,用 2'-甲基转移酶抑制剂联合 I 型干扰素靶向 NSP16 活性为抗病毒药物的开发提供了一个新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab29/9973020/f2d6e500de67/jvi.01532-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验