Schindewolf Craig, Lokugamage Kumari, Vu Michelle N, Johnson Bryan A, Scharton Dionna, Plante Jessica A, Kalveram Birte, Crocquet-Valdes Patricia A, Sotcheff Stephanea, Jaworski Elizabeth, Alvarado R Elias, Debbink Kari, Daugherty Matthew D, Weaver Scott C, Routh Andrew L, Walker David H, Plante Kenneth S, Menachery Vineet D
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
bioRxiv. 2022 Sep 26:2022.09.26.509529. doi: 10.1101/2022.09.26.509529.
Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'- methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'- MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both and , using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive to type I interferon (IFN-I) . Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'- methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, a methyltransferase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a possible target for future antiviral therapies.
Similar to other coronaviruses, disruption of SARS-CoV-2 NSP16 function attenuates viral replication in a type I interferon-dependent manner. , our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1, but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'- methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.
了解严重急性呼吸综合征冠状病毒2(SARS-CoV-2)逃避免疫系统的分子基础是设计下一代治疗方法的重要考量因素。在此,我们研究了SARS-CoV-2的非结构蛋白16(NSP16)在感染和发病机制中的作用。NSP16是一种核糖核苷2'-甲基转移酶(MTase),在加帽过程中催化甲基基团转移至mRNA。基于对其他冠状病毒的观察,我们推测NSP16的2'-MTase功能可保护SARS-CoV-2免受帽感知宿主限制。因此,我们构建了一个在NSP16活性位点破坏保守残基的SARS-CoV-2突变体。随后,我们利用SARS-CoV-2感染的仓鼠模型表明,该突变体在[具体方面1]和[具体方面2]均减弱。从机制上讲,我们证实NSP16突变体对I型干扰素(IFN-I)[具体情况]更敏感。此外,沉默IFIT1或IFIT3(可感知2'-甲基化缺失的IFN刺激基因)可部分恢复NSP16突变体的适应性。最后,我们证明,结合NSP16催化位点的甲基转移酶抑制剂辛弗林可使野生型SARS-CoV-2对IFN-I治疗敏感。总体而言,我们的研究结果突出了SARS-CoV-2 NSP16在逃避免疫系统先天性免疫中的重要性,并为未来的抗病毒治疗提出了一个可能的靶点。
与其他冠状病毒类似,SARS-CoV-2 NSP16功能的破坏以I型干扰素依赖的方式减弱病毒复制。[具体情况],我们的结果显示,在仓鼠肺部后期疾病和病毒复制减少,但NSP16突变体(dNSP16)在上呼吸道的滴度在早期出现缺陷。此外,我们的结果证实了IFIT1的作用,但也证明了IFIT3在介导dNSP16减弱中的必要性。最后,我们表明,用2'-甲基转移酶抑制剂靶向NSP16活性并结合I型干扰素为抗病毒开发提供了一条新途径。