Cao Lijian, Feng Ziyan, Guo Ruiqian, Tian Qinyu, Wang Weiwen, Rong Xiao, Zhou Mi, Cheng Chong, Ma Tian, Deng Dawei
Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China.
Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, P. R. China.
Mater Horiz. 2023 Apr 3;10(4):1342-1353. doi: 10.1039/d2mh01540d.
Engineering chem-/sono-/photo-multimodal antitumor therapies has become an efficient strategy to combat malignant tumors. However, the existence of hypoxia in the tumor microenvironment (TME) leads to limited sonodynamic or photodynamic efficiency because O is the key reactant during the process of generation of reactive oxygen species (ROS). Here, to design a desirable platform that can simultaneously convert HO in the TME into ROS and O for efficient chem-/sono-/photo-multimodal tumor therapies, we have created ultrasmall CuO-coordinated carbon nitride on a biocompatible ceria substrate (denoted as CuO-CN@CeO) a self-assisted catalytic growth strategy. The chemical and morphological structures, ROS and O generation activities, and chemo-/photo-/sono-dynamic specificities of CuO-CN@CeO when serving as multifunctional biocatalytic agents were systematically disclosed. The experimental studies validated that CuO-CN@CeO presents state-of-the-art peroxidase-like and catalase-like activities. Moreover, the light excitation and ultrasound irradiation were also demonstrated to boost ROS production. The and experiments suggest that CuO-CN@CeO can efficiently inhibit the growth of malignant melanoma chem-/sono-/photo-multimodal antitumor ability. We believe that applying these new biocatalysts with dual catalytic activities of producing ROS and O will offer a new path for engineering multimodal nanoagents to combat malignant tumors.
工程化化学/声/光多模态抗肿瘤疗法已成为对抗恶性肿瘤的一种有效策略。然而,肿瘤微环境(TME)中缺氧的存在导致声动力或光动力效率受限,因为氧气是活性氧(ROS)生成过程中的关键反应物。在此,为了设计一个理想的平台,能够同时将TME中的过氧化氢转化为ROS和氧气,以实现高效的化学/声/光多模态肿瘤治疗,我们通过一种自辅助催化生长策略,在生物相容性二氧化铈基底上制备了超小的氧化铜配位氮化碳(表示为CuO-CN@CeO)。系统地揭示了CuO-CN@CeO作为多功能生物催化剂时的化学和形态结构、ROS和氧气生成活性以及化学/光/声动力特异性。实验研究证实,CuO-CN@CeO具有一流的过氧化物酶样和过氧化氢酶样活性。此外,光激发和超声辐照也被证明能促进ROS的产生。体内和体外实验表明,CuO-CN@CeO凭借其化学/声/光多模态抗肿瘤能力能够有效抑制恶性黑色素瘤的生长。我们相信,应用这些具有产生ROS和氧气双重催化活性的新型生物催化剂,将为工程化多模态纳米药物对抗恶性肿瘤提供一条新途径。