Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China; Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China.
Acta Biomater. 2022 Nov;153:431-441. doi: 10.1016/j.actbio.2022.09.062. Epub 2022 Sep 26.
Photodynamic therapy (PDT) has become a promising cancer treatment due to in situ generation of cytotoxic reactive oxygen (ROS); however, it remains limited by the hypoxia of tumor microenvironment (TME) and penetration depth of laser. Herein, we developed a kind of GSH-/HO-responsive copper-encapsulating magnetic nanoassemblies (MNSs) for switchable T1-weighted magnetic resonance imaging (MRI) and enzyme-like activity potentiating PDT of cancer. MNSs were rationally constructed using the chelation effect of copper ions (Cu) with polyacrylic acid-coated ultrasmall iron oxide nanoparticles (UIONPs). After uptake by tumor cells, the incorporated Cu of MNSs was reduced to Cu through the intracellular GSH, which resulted in the disassembly of MNSs accompanied by the "silenced" MR signal shifting to a positive state. Sequentially, the generated Cu manifested peroxidase-like activity, catalyzing local HO in TME to cytotoxic ·OH for chemodynamic therapy. Furthermore, Cu and UIONPs could decompose HO to O thus providing extra oxygen necessary for enhancing the PDT effect of photosensitizer IR-780. Finally, IR-780-loading MNSs (MNSs@IR-780) under laser irradiation significantly inhibited tumor growth and prolonged the survival of gastric MGC-803 tumor-bearing mice. Therefore, this study provides a versatile nanoplatform as a tumor-responsive theragnostic agent. STATEMENT OF SIGNIFICANCE: Tumor hypoxia and penetration depth of laser severely hindered the PDT of cancer. Valence-convertible metal ions (VCMI, e.g., Cu/Cu, Fe/Fe) have been reported as Fenton-like agents disintegrating HO to O to enhance PDT. Tumor-delivery of VCMI is of essential importance for in situ triggering of a Fenton-like reaction. We thereby developed magnetic nanoassemblies (MNSs) to encapsulate Cu and load photosensitizer (IR-780). Stimulated by GSH and HO, MNSs performed catalase/peroxidase-like activity that provided extra O for PDT and catalyzed HO to ·OH for CDT. Consequently, IR-780-loading MNSs under laser irradiation significantly inhibit the tumor growth due to effective tumor delivery of Cu and IR-780. This study might offer a feasible nanoplatform for tumor-delivery of metal ions and drugs.
光动力疗法(PDT)由于原位生成细胞毒性活性氧(ROS)而成为一种很有前途的癌症治疗方法; 然而,它仍然受到肿瘤微环境(TME)的缺氧和激光穿透深度的限制。在此,我们开发了一种 GSH-/HO-响应的铜封装磁性纳米组装体(MNSs),用于切换式 T1 加权磁共振成像(MRI)和酶样活性增强癌症的 PDT。MNSs 是通过铜离子(Cu)与聚丙烯酸包覆的超小氧化铁纳米粒子(UIONPs)的螯合作用合理构建的。MNSs 被肿瘤细胞摄取后,细胞内的 GSH 将其还原为 Cu,导致 MNSs 解体,同时 MRI 信号从阴性状态转移到阳性状态。随后,生成的 Cu 表现出过氧化物酶样活性,在 TME 中催化局部 HO 生成细胞毒性·OH 用于化学动力学治疗。此外,Cu 和 UIONPs 可以分解 HO 产生 O,从而为增强光敏剂 IR-780 的 PDT 效应提供必要的额外氧气。最后,在激光照射下,装载 IR-780 的 MNSs(MNSs@IR-780)显著抑制了肿瘤生长并延长了荷瘤 MGC-803 胃癌小鼠的存活时间。因此,本研究提供了一种多功能纳米平台,作为一种肿瘤反应性诊断和治疗剂。
肿瘤缺氧和激光穿透深度严重阻碍了癌症的 PDT。价态可转换金属离子(VCMI,例如 Cu/Cu、Fe/Fe)已被报道为类 Fenton 试剂,可将 HO 分解为 O 以增强 PDT。VCMI 的肿瘤传递对于原位触发类 Fenton 反应至关重要。我们因此开发了磁性纳米组装体(MNSs)来封装 Cu 并负载光敏剂(IR-780)。在 GSH 和 HO 的刺激下,MNSs 表现出过氧化氢酶/过氧化物酶样活性,为 PDT 提供额外的 O,并催化 HO 生成·OH 用于 CDT。因此,在激光照射下,装载 IR-780 的 MNSs 由于有效传递 Cu 和 IR-780 而显著抑制肿瘤生长。这项研究可能为金属离子和药物的肿瘤传递提供了一种可行的纳米平台。