Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
J Mater Chem B. 2023 Feb 15;11(7):1591-1598. doi: 10.1039/d2tb02718f.
The development of dual chemodynamic therapy and NO therapy can significantly improve the efficiency of cancer treatment. Therefore, designing a multifunctional agent to take full advantage of them and maximize their therapeutic effect remains a challenging goal. Herein, we have developed a novel LDHzyme by the confinement of L-arginine (L-Arg) on the surface of Mn-LDH nanosheets. The LDHzyme can exhibit multiple enzyme-like catalytic activities, including peroxidase (POD), oxidase (OXD), and nitric oxide synthase (iNOS). Based on these enzyme-mimicking properties, LDHzyme possesses significant catalytic efficiency with a high maximum velocity of 1.41 × 10 M s, which is higher than the majority of other nanozymes. In addition, this LDHzyme can exhibit outstanding NO-enhanced lethality of ROS and further improve its efficacy. The therapeutic effect of LDHzyme has been verified to significantly inhibit tumor growth in HeLa xenograft Balb/c nude mice models, as demonstrated in both and models, revealing the promising prospects of NO-enhanced multi-enzyme dynamic therapy (MDT). These results open up an opportunity to enable the utilization of an LDH-based nanozyme as a curative nanosystem to inhibit tumor growth.
双化学动力学治疗和一氧化氮治疗的发展可以显著提高癌症治疗的效率。因此,设计一种多功能试剂来充分利用它们并最大限度地发挥它们的治疗效果仍然是一个具有挑战性的目标。在此,我们通过将 L-精氨酸(L-Arg)限制在 Mn-LDH 纳米片表面上,开发了一种新型的 LDHzyme。LDHzyme 可以表现出多种酶类催化活性,包括过氧化物酶(POD)、氧化酶(OXD)和一氧化氮合酶(iNOS)。基于这些酶模拟特性,LDHzyme 具有很高的催化效率,其最大速度为 1.41×10 M s,高于大多数其他纳米酶。此外,这种 LDHzyme 可以表现出出色的 NO 增强的 ROS 致死性,并进一步提高其疗效。LDHzyme 的治疗效果已被证明可以显著抑制 HeLa 异种移植 Balb/c 裸鼠模型中的肿瘤生长,在 和 两种模型中均得到了验证,揭示了 NO 增强的多酶动力学治疗(MDT)的广阔前景。这些结果为利用基于 LDH 的纳米酶作为治疗性纳米系统来抑制肿瘤生长提供了机会。