Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany.
Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Cozzi 55, Milano 20125, Italy.
ACS Appl Mater Interfaces. 2023 Feb 15;15(6):8770-8782. doi: 10.1021/acsami.2c22078. Epub 2023 Feb 1.
We investigated the adsorption of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the virus responsible for the current pandemic, on the surface of the model catalyst TiO(101) using atomic force microscopy, transmission electron microscopy, fluorescence microscopy, and X-ray photoelectron spectroscopy, accompanied by density functional theory calculations. Three different methods were employed to inactivate the virus after it was loaded on the surface of TiO(101): (i) ethanol, (ii) thermal, and (iii) UV treatments. Microscopic studies demonstrate that the denatured spike proteins and other proteins in the virus structure readsorb on the surface of TiO under thermal and UV treatments. The interaction of the virus with the surface of TiO was different for the thermally and UV treated samples compared to the sample inactivated via ethanol treatment. AFM and TEM results on the UV-treated sample suggested that the adsorbed viral particles undergo damage and photocatalytic oxidation at the surface of TiO(101) which can affect the structural proteins of SARS-CoV-2 and denature the spike proteins in 30 min. The role of Pd nanoparticles (NPs) was investigated in the interaction between SARS-CoV-2 and TiO(101). The presence of Pd NPs enhanced the adsorption of the virus due to the possible interaction of the spike protein with the NPs. This study is the first investigation of the interaction of SARS-CoV-2 with the surface of single crystalline TiO(101) as a potential candidate for virus deactivation applications. Clarification of the interaction of the virus with the surface of semiconductor oxides will aid in obtaining a deeper understanding of the chemical processes involved in photoinactivation of microorganisms, which is important for the design of effective photocatalysts for air purification and self-cleaning materials.
我们使用原子力显微镜、透射电子显微镜、荧光显微镜和 X 射线光电子能谱,结合密度泛函理论计算,研究了导致当前大流行的病毒——严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)在模型催化剂 TiO(101)表面的吸附。将病毒加载到 TiO(101)表面后,采用三种不同的方法对其进行灭活:(i)乙醇、(ii)热和(iii)UV 处理。显微镜研究表明,热和 UV 处理后,病毒结构中变性的刺突蛋白和其他蛋白质会重新吸附在 TiO 表面。与通过乙醇处理灭活的样品相比,热和 UV 处理的样品中病毒与 TiO 表面的相互作用不同。AFM 和 TEM 对 UV 处理样品的结果表明,吸附的病毒颗粒在 TiO(101)表面会发生损伤和光催化氧化,这可能会影响 SARS-CoV-2 的结构蛋白并使刺突蛋白在 30 分钟内变性。研究了 Pd 纳米颗粒(NPs)在 SARS-CoV-2 与 TiO(101)之间相互作用中的作用。由于刺突蛋白可能与 NPs 相互作用,Pd NPs 的存在增强了病毒的吸附。这项研究首次研究了 SARS-CoV-2 与单晶 TiO(101)表面的相互作用,这是一种用于病毒失活动力学的潜在候选材料。阐明病毒与半导体氧化物表面的相互作用,将有助于更深入地了解涉及微生物光灭活的化学过程,这对于设计有效的空气净化和自清洁材料用光催化剂至关重要。