Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
Adv Sci (Weinh). 2024 Nov;11(41):e2404186. doi: 10.1002/advs.202404186. Epub 2024 Sep 4.
Coronavirus stands for a large family of viruses characterized by protruding spikes surrounding a lipidic membrane adorned with proteins. The present study explores the adhesion of transmissible gastroenteritis coronavirus (TGEV) particles on a variety of reference solid surfaces that emulate typical virus-surface interactions. Atomic force microscopy informs about trapping effectivity and the shape of the virus envelope on each surface, revealing that the deformation of TGEV particles spans from 20% to 50% in diameter. Given this large deformation range, experimental Langmuir isotherms convey an unexpectedly moderate variation in the adsorption-free energy, indicating a viral adhesion adaptability which goes beyond the membrane. The combination of an extended Helfrich theory and coarse-grained simulations reveals that, in fact, the envelope and the spikes present complementary adsorption affinities. While strong membrane-surface interaction lead to highly deformed TGEV particles, surfaces with strong spike attraction yield smaller deformations with similar or even larger adsorption-free energies.
冠状病毒是一大类病毒的统称,其特征是围绕着带有蛋白质的脂质膜的突出刺。本研究探索了传染性胃肠炎冠状病毒(TGEV)颗粒在各种参考固体表面上的粘附,这些表面模拟了典型的病毒-表面相互作用。原子力显微镜可以了解病毒在每个表面上的捕获效率和包膜的形状,结果表明,TGEV 颗粒的变形程度在直径的 20%到 50%之间。鉴于这种大的变形范围,实验 Langmuir 等温线表明吸附自由能的变化出乎意料地温和,这表明病毒的粘附适应性超出了膜的范围。扩展的 Helfrich 理论和粗粒化模拟的组合表明,实际上,包膜和刺突表现出互补的吸附亲和力。虽然强的膜-表面相互作用导致 TGEV 颗粒高度变形,但具有强刺突吸引力的表面会产生较小的变形,具有相似甚至更大的吸附自由能。