Suppr超能文献

傅里叶启发的神经模块,用于实时、高保真的计算机生成全息图。

Fourier-inspired neural module for real-time and high-fidelity computer-generated holography.

出版信息

Opt Lett. 2023 Feb 1;48(3):759-762. doi: 10.1364/OL.477630.

Abstract

Learning-based computer-generated holography (CGH) algorithms appear as novel alternatives to generate phase-only holograms. However, most existing learning-based approaches underperform their iterative peers regarding display quality. Here, we recognize that current convolutional neural networks have difficulty learning cross-domain tasks due to the limited receptive field. In order to overcome this limitation, we propose a Fourier-inspired neural module, which can be easily integrated into various CGH frameworks and significantly enhance the quality of reconstructed images. By explicitly leveraging Fourier transforms within the neural network architecture, the mesoscopic information within the phase-only hologram can be more handily extracted. Both simulation and experiment were performed to showcase its capability. By incorporating it into U-Net and HoloNet, the peak signal-to-noise ratio of reconstructed images is measured at 29.16 dB and 33.50 dB during the simulation, which is 4.97 dB and 1.52 dB higher than those by the baseline U-Net and HoloNet, respectively. Similar trends are observed in the experimental results. We also experimentally demonstrated that U-Net and HoloNet with the proposed module can generate a monochromatic 1080p hologram in 0.015 s and 0.020 s, respectively.

摘要

基于学习的计算机生成全息图 (CGH) 算法作为生成纯相位全息图的新方法出现。然而,大多数现有的基于学习的方法在显示质量方面都不如它们的迭代方法。在这里,我们认识到,由于受限的感受野,当前的卷积神经网络在学习跨领域任务方面存在困难。为了克服这一限制,我们提出了一种受傅里叶启发的神经模块,它可以轻松集成到各种 CGH 框架中,并显著提高重建图像的质量。通过在神经网络架构中显式地利用傅里叶变换,可以更方便地提取纯相位全息图中的介观信息。我们进行了模拟和实验,以展示其功能。通过将其纳入 U-Net 和 HoloNet 中,在模拟中,重建图像的峰值信噪比分别达到 29.16 dB 和 33.50 dB,比基线 U-Net 和 HoloNet 分别高出 4.97 dB 和 1.52 dB。在实验结果中也观察到了类似的趋势。我们还通过实验证明,带有所提出模块的 U-Net 和 HoloNet 可以分别在 0.015 s 和 0.020 s 内生成单色 1080p 全息图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验