Wu Jiachen, Liu Kexuan, Sui Xiaomeng, Cao Liangcai
Opt Lett. 2021 Jun 15;46(12):2908-2911. doi: 10.1364/OL.425485.
Learning-based computer-generated holography (CGH) provides a rapid hologram generation approach for holographic displays. Supervised training requires a large-scale dataset with target images and corresponding holograms. We propose an autoencoder-based neural network (holoencoder) for phase-only hologram generation. Physical diffraction propagation was incorporated into the autoencoder's decoding part. The holoencoder can automatically learn the latent encodings of phase-only holograms in an unsupervised manner. The proposed holoencoder was able to generate high-fidelity 4K resolution holograms in 0.15 s. The reconstruction results validate the good generalizability of the holoencoder, and the experiments show fewer speckles in the reconstructed image compared with the existing CGH algorithms.
基于学习的计算机生成全息术(CGH)为全息显示提供了一种快速的全息图生成方法。监督训练需要一个包含目标图像和相应全息图的大规模数据集。我们提出了一种基于自动编码器的神经网络(全息编码器)用于仅相位全息图的生成。物理衍射传播被纳入到自动编码器的解码部分。该全息编码器能够以无监督的方式自动学习仅相位全息图的潜在编码。所提出的全息编码器能够在0.15秒内生成高保真的4K分辨率全息图。重建结果验证了全息编码器良好的通用性,并且实验表明与现有的CGH算法相比,重建图像中的散斑更少。