Suppr超能文献

使用DeepC从DNA序列预测染色质相互作用。

Predicting Chromatin Interactions from DNA Sequence Using DeepC.

作者信息

Schwessinger Ron

机构信息

MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.

出版信息

Methods Mol Biol. 2023;2624:19-42. doi: 10.1007/978-1-0716-2962-8_3.

Abstract

The genome 3D structure is central to understanding how disease-associated genetic variants in the noncoding genome regulate their target genes. Genome architecture spans large-scale structures determined by fine-grained regulatory elements, making it challenging to predict the effects of sequence and structural variants. Experimental approaches for chromatin interaction mapping remain costly and time-consuming, limiting their use for interrogating changes of chromatin architecture associated with genomic variation at scale. Computational models to predict chromatin interactions have either interpreted chromatin at coarse resolution or failed to capture the long-range dependencies of larger sequence contexts. To bridge this gap, we previously developed deepC, a deep neural network approach to predict chromatin interactions from DNA sequence at megabase scale. deepC employs dilated convolutional layers to achieve simultaneously a large sequence context while interpreting the DNA sequence at single base pair resolution. Using transfer learning of convolutional weights trained to predict a compendium of chromatin features across cell types allows deepC to predict cell type-specific chromatin interactions from DNA sequence alone. Here, we present a detailed workflow to predict chromatin interactions with deepC. We detail the necessary data pre-processing steps, guide through deepC model training, and demonstrate how to employ trained models to predict chromatin interactions and the effect of sequence variations on genome architecture.

摘要

基因组三维结构对于理解非编码基因组中与疾病相关的遗传变异如何调控其靶基因至关重要。基因组架构跨越由精细调控元件决定的大规模结构,这使得预测序列和结构变异的影响具有挑战性。染色质相互作用图谱的实验方法仍然成本高昂且耗时,限制了它们在大规模研究与基因组变异相关的染色质架构变化中的应用。预测染色质相互作用的计算模型要么以粗分辨率解释染色质,要么未能捕捉更大序列背景下的长程依赖性。为了弥合这一差距,我们之前开发了deepC,一种深度神经网络方法,用于在兆碱基尺度上从DNA序列预测染色质相互作用。deepC采用扩张卷积层,在以单碱基对分辨率解释DNA序列的同时实现大的序列背景。利用训练来预测跨细胞类型的染色质特征汇编的卷积权重的迁移学习,使得deepC能够仅从DNA序列预测细胞类型特异性的染色质相互作用。在这里,我们展示了使用deepC预测染色质相互作用的详细工作流程。我们详细介绍了必要的数据预处理步骤,指导deepC模型训练,并演示如何使用训练好的模型来预测染色质相互作用以及序列变异对基因组架构的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验