Suppr超能文献

利用赤池信息准则预测 DNA 序列的三维基因组折叠

Predicting 3D genome folding from DNA sequence with Akita.

机构信息

Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.

Calico Life Sciences LLC, South San Francisco, CA, USA.

出版信息

Nat Methods. 2020 Nov;17(11):1111-1117. doi: 10.1038/s41592-020-0958-x. Epub 2020 Oct 12.

Abstract

In interphase, the human genome sequence folds in three dimensions into a rich variety of locus-specific contact patterns. Cohesin and CTCF (CCCTC-binding factor) are key regulators; perturbing the levels of either greatly disrupts genome-wide folding as assayed by chromosome conformation capture methods. Still, how a given DNA sequence encodes a particular locus-specific folding pattern remains unknown. Here we present a convolutional neural network, Akita, that accurately predicts genome folding from DNA sequence alone. Representations learned by Akita underscore the importance of an orientation-specific grammar for CTCF binding sites. Akita learns predictive nucleotide-level features of genome folding, revealing effects of nucleotides beyond the core CTCF motif. Once trained, Akita enables rapid in silico predictions. Accounting for this, we demonstrate how Akita can be used to perform in silico saturation mutagenesis, interpret eQTLs, make predictions for structural variants and probe species-specific genome folding. Collectively, these results enable decoding genome function from sequence through structure.

摘要

在细胞分裂间期,人类基因组序列在三维空间中折叠成丰富多样的特定基因座接触模式。黏合蛋白(cohesin)和 CTCF(CCCTC 结合因子)是关键的调节因子;干扰这两种蛋白的水平会极大地破坏全基因组折叠,这可以通过染色体构象捕获方法进行检测。尽管如此,特定 DNA 序列如何编码特定的基因座折叠模式仍然未知。在这里,我们提出了一个卷积神经网络,名为 Akita,它可以仅从 DNA 序列准确预测基因组折叠。Akita 学习到的表示强调了 CTCF 结合位点的定向特定语法的重要性。Akita 学习基因组折叠的预测性核苷酸水平特征,揭示了核心 CTCF 基序以外的核苷酸的影响。一旦训练完成,Akita 就可以实现快速的计算预测。考虑到这一点,我们展示了如何使用 Akita 进行计算饱和突变、解释 eQTL、对结构变异进行预测以及探测物种特异性基因组折叠。总的来说,这些结果通过结构从序列解码基因组功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7582/8211359/483eb86b3071/nihms-1622369-f0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验