Suppr超能文献

从甲基化到活性:一个通过个体肿瘤DNA甲基化组揭示启动子活性图谱的深度学习框架指南。

A Guide to MethylationToActivity: A Deep Learning Framework That Reveals Promoter Activity Landscapes from DNA Methylomes in Individual Tumors.

作者信息

Dieseldorff Jones Karissa, Putnam Daniel, Williams Justin, Chen Xiang

机构信息

Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.

出版信息

Methods Mol Biol. 2023;2624:73-85. doi: 10.1007/978-1-0716-2962-8_6.

Abstract

Genome-wide DNA methylomes have contributed greatly to tumor detection and subclassification. However, interpreting the biological impact of the DNA methylome at the individual gene level remains a challenge. MethylationToActivity (M2A) is a pipeline that uses convolutional neural networks to infer H3K4me3 and H3K27ac enrichment from DNA methylomes and thus infer promoter activity. It was shown to be highly accurate and robust in revealing promoter activity landscapes in various pediatric and adult cancers. The following will present a user-friendly guide through the model pipeline.

摘要

全基因组DNA甲基化组对肿瘤检测和亚分类有很大贡献。然而,在单个基因水平上解释DNA甲基化组的生物学影响仍然是一项挑战。甲基化到活性(M2A)是一种利用卷积神经网络从DNA甲基化组推断H3K4me3和H3K27ac富集从而推断启动子活性的流程。在揭示各种儿科和成人癌症的启动子活性图谱方面,它被证明具有高度准确性和稳健性。以下将提供一个通过该模型流程的用户友好指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验