FB Life Science Engineering (LSE), Institut für Biomedizinische Technik (IBMT), Technische Hochschule Mittelhessen (THM), Gießen, Germany; Department of biomedical engineering, University of Duhok, Duhok, Kurdistan Region-Iraq.
FB Life Science Engineering (LSE), Institut für Biomedizinische Technik (IBMT), Technische Hochschule Mittelhessen (THM), Gießen, Germany.
Comput Biol Med. 2023 Nov;166:107553. doi: 10.1016/j.compbiomed.2023.107553. Epub 2023 Sep 30.
The denoising autoencoder (DAE) is commonly used to denoise bio-signals such as electrocardiogram (ECG) signals through dimensional reduction. Typically, the DAE model needs to be trained using correlated input segments such as QRS-aligned segments or long ECG segments. However, using long ECG segments as an input can result in a complex deep DAE model that requires many hidden layers to achieve a low-dimensional representation, which is a major drawback.
This work proposes a novel DAE model, called running DAE (RunDAE), for denoising short ECG segments without relying on the R-peak detection algorithm for alignment. The proposed RunDAE model employs a sample-by-sample processing approach, considering the correlation between consecutive, overlapped ECG segments. The performance of both the classical DAE and RunDAE models with convolutional and dense layers, respectively, is evaluated using corrupted QRS-aligned and non-aligned ECG segments with physical noise such as motion artifacts, electrode movement, baseline wander, and simulated noise such as Gaussian white noise.
The simulation results indicate that 1. QRS-aligned segments are preferable to non-aligned segments, 2. the RunDAE model outperforms the classical DAE model in denoising ECG signals, especially when using dense layers and QRS-aligned segments, 3. training the RunDAE models with normal and arrhythmic ECG signals enhance model's properties/capabilities, and 4. the RunDAE is a multistage, non-causal, nonlinear adaptive filter.
A shallow learning model, which consists of a couple of hidden layers, could achieve outstanding denoising performance using only the correlation among neighboring samples.
去噪自动编码器(DAE)常用于通过降维来对生物信号(如心电图(ECG)信号)进行去噪。通常,DAE 模型需要使用相关的输入段(如 QRS 对齐段或长 ECG 段)进行训练。然而,将长 ECG 段作为输入可能会导致复杂的深度 DAE 模型,需要许多隐藏层才能实现低维表示,这是一个主要的缺点。
这项工作提出了一种新颖的 DAE 模型,称为运行 DAE(RunDAE),用于对短 ECG 段进行去噪,而无需依赖 R 波检测算法进行对齐。所提出的 RunDAE 模型采用逐样本处理方法,考虑到连续重叠 ECG 段之间的相关性。分别使用带物理噪声(如运动伪影、电极移动、基线漂移)和模拟噪声(如高斯白噪声)的 QRS 对齐和未对齐 ECG 段以及卷积和密集层的经典 DAE 和 RunDAE 模型来评估性能。
仿真结果表明:1. QRS 对齐段优于未对齐段;2. 在去噪 ECG 信号方面,RunDAE 模型优于经典 DAE 模型,特别是在使用密集层和 QRS 对齐段时;3. 使用正常和心律失常 ECG 信号训练 RunDAE 模型可增强模型的特性/能力;4. RunDAE 是一种多阶段、非因果、非线性自适应滤波器。
浅层学习模型仅利用相邻样本之间的相关性,就可以通过少量隐藏层实现出色的去噪性能。