Suppr超能文献

两种自动解决方案对腹部 CT 图像进行横断面骨骼肌测量的对比研究。

A comparative study of two automated solutions for cross-sectional skeletal muscle measurement from abdominal computed tomography images.

机构信息

Public Health Department, Clinical Investigation Center-Technological, Innovation, INSERM CIC1406, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France.

CHU Grenoble Alpes, Cellule d'ingénierie des données, Grenoble, France.

出版信息

Med Phys. 2023 Aug;50(8):4973-4980. doi: 10.1002/mp.16261. Epub 2023 Feb 16.

Abstract

BACKGROUND

Measurement of cross-sectional muscle area (CSMA) at the mid third lumbar vertebra (L3) level from computed tomography (CT) images is becoming one of the reference methods for sarcopenia diagnosis. However, manual skeletal muscle segmentation is tedious and is thus restricted to research. Automated solutions are required for use in clinical practice.

PURPOSE

The aim of this study was to compare the reliability of two automated solutions for the measurement of CSMA.

METHODS

We conducted a retrospective analysis of CT images in our hospital database. We included consecutive individuals hospitalized at the Grenoble University Hospital in France between January and May 2018 with abdominal CT images and sagittal reconstruction. We used two types of software to automatically segment skeletal muscle: ABACS, a module of the SliceOmatic software solution "ABACS-SliceOmatic," and a deep learning-based solution called "AutoMATiCA." Manual segmentation was performed by a medical expert to generate reference data using "SliceOmatic." The Dice similarity coefficient (DSC) was used to measure overlap between the results of the manual and the automated segmentations. The DSC value for each method was compared with the Mann-Whitney U test.

RESULTS

A total of 676 hospitalized individuals was retrospectively included (365 males [53.8%] and 312 females [46.2%]). The median DSC for SliceOmatic vs AutoMATiCA (0.969 [5th percentile: 0.909]) was greater than the median DSC for SliceOmatic vs. ABACS-SliceOmatic (0.949 [5th percentile: 0.836]) (p < 0.001).

CONCLUSIONS

AutoMATiCA, which used artificial intelligence, was more reliable than ABACS-SliceOmatic for skeletal muscle segmentation at the L3 level in a cohort of hospitalized individuals. The next step is to develop and validate a neural network that can identify L3 slices, which is currently a fastidious process.

摘要

背景

从计算机断层扫描(CT)图像测量第三腰椎(L3)中部的横截面积(CSMA)已成为肌少症诊断的参考方法之一。然而,手动骨骼肌肉分割很繁琐,因此仅限于研究。需要自动化解决方案才能在临床实践中使用。

目的

本研究旨在比较两种用于测量 CSMA 的自动化解决方案的可靠性。

方法

我们对我院数据库中的 CT 图像进行了回顾性分析。我们纳入了 2018 年 1 月至 5 月期间在法国格勒诺布尔大学医院住院的连续个体,他们均进行了腹部 CT 扫描和矢状位重建。我们使用两种类型的软件自动分割骨骼肌肉:SliceOmatic 软件解决方案“ABACS-SliceOmatic”的模块 ABACS 和称为“AutoMATiCA”的基于深度学习的解决方案。手动分割由医学专家使用“SliceOmatic”生成参考数据。使用 Dice 相似系数(DSC)来衡量手动分割和自动分割结果之间的重叠程度。使用 Mann-Whitney U 检验比较每种方法的 DSC 值。

结果

共回顾性纳入 676 名住院患者(365 名男性[53.8%]和 312 名女性[46.2%])。SliceOmatic 与 AutoMATiCA 的 DSC 中位数(0.969 [第 5 百分位数:0.909])大于 SliceOmatic 与 ABACS-SliceOmatic 的 DSC 中位数(0.949 [第 5 百分位数:0.836])(p < 0.001)。

结论

在一组住院患者中,使用人工智能的 AutoMATiCA 比 ABACS-SliceOmatic 更可靠,用于 L3 水平的骨骼肌肉分割。下一步是开发和验证一种能够识别 L3 切片的神经网络,这目前是一个繁琐的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验