Suppr超能文献

提高环酮缩醛的亲水性可改善乙烯基共聚物的水解降解和糖聚合物纳米粒子与凝集素的相互作用。

Increasing the Hydrophilicity of Cyclic Ketene Acetals Improves the Hydrolytic Degradation of Vinyl Copolymers and the Interaction of Glycopolymer Nanoparticles with Lectins.

机构信息

Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.

Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.

出版信息

Biomacromolecules. 2023 Feb 13;24(2):991-1002. doi: 10.1021/acs.biomac.2c01419. Epub 2023 Feb 1.

Abstract

Radical ring-opening polymerization (rROP) of cyclic ketene acetals (CKAs) with traditional vinyl monomers allows the synthesis of degradable vinyl copolymers. However, since the most commonly used CKAs are hydrophobic, most degradable vinyl copolymers reported so far degrade very slowly by hydrolysis under physiological conditions (phosphate-buffered saline, pH 7.4, 37 °C), which can be detrimental for biomedical applications. Herein, to design advanced vinyl copolymers by rROP with high CKA content and enhanced degradation profiles, we reported the copolymerization of 2-methylene-1,3,6-trioxocane (MTC) as a CKA with vinyl ether (VE) or maleimide (MI) derivatives. By performing a point-by-point comparison between the MTC/VE and MTC/MI copolymerization systems, and their counterparts based on 2-methylene-1,3-dioxepane (MDO) and 5,6-benzo-2-methylene-1,3-dioxepane (BMDO), we showed negligible impact on the macromolecular characteristics and similar reactivity ratios, suggesting successful substitution of MDO and BMDO by MTC. Interestingly, owing to the hydrophilicity of MTC, the obtained copolymers exhibited a faster hydrolytic degradation under both accelerated and physiological conditions. We then prepared MTC-based glycopolymers, which were formulated into surfactant-free nanoparticles, exhibiting excellent colloidal stability up to 4 months and complete degradation under enzymatic conditions. Importantly, MTC-based glyconanoparticles also showed a similar cytocompatibility toward two healthy cell lines and a much stronger lectin affinity than MDO-based glyconanoparticles.

摘要

环状酮缩醛(CKAs)与传统乙烯基单体的自由基开环聚合(rROP)允许可降解乙烯基共聚物的合成。然而,由于最常用的 CKAs 是疏水性的,迄今为止报道的大多数可降解乙烯基共聚物在生理条件下(磷酸盐缓冲盐水,pH7.4,37°C)通过水解非常缓慢地降解,这可能对生物医学应用不利。在此,为了通过 rROP 设计具有高 CKA 含量和增强的降解特性的先进乙烯基共聚物,我们报道了 2-亚甲基-1,3,6-三恶烷(MTC)作为 CKAs 与乙烯基醚(VE)或马来酰亚胺(MI)衍生物的共聚。通过对 MTC/VE 和 MTC/MI 共聚体系及其基于 2-亚甲基-1,3-二恶烷(MDO)和 5,6-苯并-2-亚甲基-1,3-二恶烷(BMDO)的对应物进行逐点比较,我们表明对大分子特性和相似的反应性比率几乎没有影响,这表明 MDO 和 BMDO 被 MTC 成功取代。有趣的是,由于 MTC 的亲水性,所得共聚物在加速和生理条件下表现出更快的水解降解。然后,我们制备了基于 MTC 的糖基聚合物,将其制成无表面活性剂的纳米颗粒,表现出出色的胶体稳定性,长达 4 个月,并且在酶条件下完全降解。重要的是,基于 MTC 的糖纳米颗粒对两种健康细胞系表现出相似的细胞相容性,并且比基于 MDO 的糖纳米颗粒具有更强的凝集素亲和力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验