Department of Chemistry and Biochemistry, Florida International University, Miami, Florida33199, United States.
School of Computing and Information Science, Florida International University, Miami, Florida33199, United States.
Environ Sci Technol. 2023 Feb 14;57(6):2672-2681. doi: 10.1021/acs.est.2c04715. Epub 2023 Feb 1.
Dissolved Organic Matter (DOM) is an important component of the global carbon cycle. Unscrambling the structural footprint of DOM is key to understand its biogeochemical transformations at the mechanistic level. Although numerous studies have improved our knowledge of DOM chemical makeup, its three-dimensional picture remains largely unrevealed. In this work, we compare four solid phase extracted (SPE) DOM samples from three different freshwater ecosystems using high resolution mobility and ultrahigh-resolution Fourier transform ion cyclotron resonance tandem mass spectrometry (FT-ICR MS/MS). Structural families were identified based on neutral losses at the level of nominal mass using continuous accumulation of selected ions-collision induced dissociation (CASI-CID)FT-ICR MS/MS. Comparison of the structural families indicated dissimilarities in the structural footprint of this sample set. The structural family representation using Cytoscape software revealed characteristic clustering patterns among the DOM samples, thus confirming clear differences at the structural level (Only 10% is common across the four samples.). The analysis at the level of neutral loss-based functionalities suggests that hydration and carboxylation are ubiquitous transformational processes across the three ecosystems. In contrast, transformation mechanisms involving methoxy moieties may be constrained in estuarine systems due to extensive upstream lignin biodegradation. The inclusion of the isomeric content (mobility measurements at the level of chemical formula) in the structural family description suggests that additional transformation pathways and/or source variations are possible and account for the dissimilarities observed. While the structural character of more and diverse types of DOM samples needs to be assessed and added to this database, the results presented here demonstrate that Graph-DOM is a powerful tool capable of providing novel information on the DOM chemical footprint, based on structural interconnections of precursor molecules generated by fragmentation pathways and collisional cross sections.
溶解有机质(DOM)是全球碳循环的重要组成部分。解析 DOM 的结构特征对于在机制层面理解其生物地球化学转化至关重要。尽管许多研究已经提高了我们对 DOM 化学组成的认识,但它的三维结构仍然很大程度上未被揭示。在这项工作中,我们使用高分辨率迁移率和超高分辨率傅里叶变换离子回旋共振串联质谱(FT-ICR MS/MS)比较了来自三个不同淡水生态系统的四个固相萃取(SPE)DOM 样品。基于名义质量水平的中性损失,使用连续选择离子累积-碰撞诱导解离(CASI-CID)FT-ICR MS/MS,对结构家族进行了鉴定。结构家族的比较表明,该样品集中的结构特征存在差异。使用 Cytoscape 软件对结构家族进行的表示揭示了 DOM 样品之间的特征聚类模式,从而证实了结构水平上的明显差异(四个样品中只有 10%是共同的)。基于中性损失的功能分析表明,水合和羧化是三个生态系统中普遍存在的转化过程。相比之下,由于上游木质素的广泛生物降解,涉及甲氧基部分的转化机制可能在河口系统中受到限制。在结构家族描述中包含异构体含量(化学式水平的迁移率测量)表明,可能存在其他转化途径和/或来源变化,并解释了观察到的差异。虽然需要评估和将更多和更多类型的 DOM 样品的结构特征添加到该数据库中,但这里呈现的结果表明,Graph-DOM 是一种强大的工具,能够根据通过碎片化途径和碰撞截面生成的前体分子的结构连接提供关于 DOM 化学足迹的新信息。