State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
School of Microelectronics, Shanghai University, 200444 Shanghai, China.
Rev Sci Instrum. 2023 Jan 1;94(1):015109. doi: 10.1063/5.0089908.
We present a new magnetometry method integrating an ensemble of nitrogen-vacancy (NV) centers in a single-crystal diamond with an extended dynamic range for monitoring a fast changing magnetic-field. The NV-center spin resonance frequency is tracked using a closed-loop frequency locked technique with fast frequency hopping to achieve a 10 kHz measurement bandwidth, thus allowing for the detection of fast changing magnetic signals up to 0.723 T/s. This technique exhibits an extended dynamic range subjected to the working bandwidth of the microwave source. This extended dynamic range can reach up to 4.3 mT, which is 86 times broader than the intrinsic dynamic range. The essential components for NV spin control and signal processing, such as signal generation, microwave frequency control, data processing, and readout, are integrated in a board-level system. With this platform, we demonstrate a broadband magnetometry with an optimized sensitivity of 4.2 nT Hz. This magnetometry method has the potential to be implemented in a multichannel frequency locked vector magnetometer suitable for a wide range of practical applications, such as magnetocardiography and high-precision current sensors.
我们提出了一种新的磁强计方法,将单个单晶金刚石中的氮空位(NV)中心集成到一个系统中,该系统具有扩展的动态范围,可用于监测快速变化的磁场。使用具有快速频率跳频的闭环频率锁定技术来跟踪 NV 中心自旋共振频率,从而实现 10 kHz 的测量带宽,从而能够检测高达 0.723 T/s 的快速变化的磁场信号。该技术在微波源的工作带宽下表现出扩展的动态范围。这个扩展的动态范围可以达到 4.3 mT,比固有动态范围宽 86 倍。用于 NV 自旋控制和信号处理的基本组件,如信号生成、微波频率控制、数据处理和读出,都集成在一个板级系统中。利用这个平台,我们演示了一种具有优化灵敏度 4.2 nT Hz 的宽带磁强计。这种磁强计方法有可能被应用于多通道频率锁定矢量磁强计中,适用于广泛的实际应用,如心磁图和高精度电流传感器。