Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland.
Institute of Mathematics, Jagiellonian University, S. Łojasiewicza 6, 30-348 Kraków, Poland.
Chaos. 2023 Jan;33(1):013128. doi: 10.1063/5.0111505.
In this paper, we introduce a novel framework that allows efficient stochastic process discrimination. The underlying test statistic is based on even empirical moments and generalizes the time-averaged mean-squared displacement framework; the test is designed to allow goodness-of-fit statistical testing of processes with stationary increments and a finite-moment distribution. In particular, while our test statistic is based on a simple and intuitive idea, it enables efficient discrimination between finite- and infinite-moment processes even if the underlying laws are relatively close to each other. This claim is illustrated via an extensive simulation study, e.g., where we confront α-stable processes with stability index close to 2 with their standard Gaussian equivalents. For completeness, we also show how to embed our methodology into the real data analysis by studying the real metal price data.
在本文中,我们引入了一种新颖的框架,允许有效的随机过程判别。基础的检验统计量基于偶数经验矩,并推广了时间平均均方位移框架;该检验旨在允许具有平稳增量和有限矩分布的过程进行拟合优度统计检验。特别地,虽然我们的检验统计量基于一个简单而直观的想法,但即使基础定律彼此相对接近,它也能够有效地区分有限和无限矩过程。这一说法通过广泛的模拟研究得到了说明,例如,我们将接近 2 的 α-稳定过程与标准高斯等效物进行对比。为了完整性,我们还通过研究真实的金属价格数据,展示了如何将我们的方法嵌入到实际数据分析中。