Suppr超能文献

基于多任务深度学习的化学毒性预测协同模型。

Co-model for chemical toxicity prediction based on multi-task deep learning.

机构信息

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.

出版信息

Mol Inform. 2023 May;42(5):e2200257. doi: 10.1002/minf.202200257. Epub 2023 Mar 17.

Abstract

The toxicity of compounds is closely related to the effectiveness and safety of drug development, and accurately predicting the toxicity of compounds is one of the most challenging tasks in medicinal chemistry and pharmacology. In this paper, we construct three types of models for single and multi-tasking based on 2D and 3D descriptors, fingerprints and molecular graphs, and then validate the models with benchmark tests on the Tox21 data challenge. We found that due to the information sharing mechanism of multi-task learning, it could address the imbalance problem of the Tox21 data sets to some extent, and the prediction performance of the multi-task was significantly improved compared with the single task in general. Given the complement of the different molecular representations and modeling algorithms, we attempted to integrate them into a robust Co-Model. Our Co-Model performs well in various evaluation metrics on the test set and also achieves significant performance improvement compared to other models in the literature, which clearly demonstrates its superior predictive power and robustness.

摘要

化合物的毒性与药物开发的有效性和安全性密切相关,准确预测化合物的毒性是药物化学和药理学中最具挑战性的任务之一。在本文中,我们基于 2D 和 3D 描述符、指纹和分子图构建了三种单任务和多任务模型,然后在 Tox21 数据挑战基准测试中对模型进行了验证。我们发现,由于多任务学习的信息共享机制,它可以在一定程度上解决 Tox21 数据集的不平衡问题,并且多任务的预测性能通常比单任务有显著提高。鉴于不同分子表示和建模算法的互补性,我们尝试将它们集成到一个稳健的联合模型中。我们的联合模型在测试集上的各种评估指标中表现良好,并且与文献中的其他模型相比也取得了显著的性能提升,这清楚地表明了它卓越的预测能力和稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验