Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
Jinan Guoke Medical Technology Development Co. Ltd., Jinan, China.
Eur Radiol. 2023 May;33(5):3532-3543. doi: 10.1007/s00330-022-09385-z. Epub 2023 Feb 1.
Time of flight magnetic resonance angiography (TOF-MRA) is the primary non-invasive screening method for cerebral aneurysms. We aimed to develop a computer-aided aneurysm detection method to improve the diagnostic efficiency and accuracy, especially decrease the false positive rate.
This is a retrospective multicenter study. The dataset contained 1160 TOF-MRA examinations composed of unruptured aneurysms (n = 1096) and normal controls (n = 166) from six hospitals. A total of 1037 examinations acquired from 2013 to 2019 were used as training set; 123 examinations acquired from 2020 to 2021 were used as external test set. We proposed an equalized augmentation strategy based on aneurysm location and constructed a detection model based on dual channel SE-3D UNet. The model was trained with a 5-fold cross-validation in the training set, then tested on the external test set.
The proposed method achieved 82.46% sensitivity on patient-level, 73.85% sensitivity on lesion-level, and 0.88 false positives per case in the external test set. The performance did not show significant differences in subgroups according to the aneurysm site (except ACA), aneurysm size (except smaller than 3 mm), or MRI scanners. The performance preceded the basic SE-3D UNet by increasing 15.79% patient-level sensitivity and decreasing 4.19 FPs/case.
The proposed automated aneurysm detection method achieved acceptable sensitivity while controlling fairly low false positives per case. It might provide a useful auxiliary tool of cerebral aneurysms MRA screening.
• The need for automated cerebral aneurysms detecting is growing. • The strategy of equalized augmentation based on aneurysm location and dual-channel input could improve the model performance. • The retrospective multi-center study showed that the proposed automated cerebral aneurysms detection using dual-channel SE-3D UNet could achieve acceptable sensitivity while controlling a low false positive rate.
时间飞越磁共振血管造影术(TOF-MRA)是脑动脉瘤的主要非侵入性筛查方法。我们旨在开发一种计算机辅助的动脉瘤检测方法,以提高诊断效率和准确性,特别是降低假阳性率。
这是一项回顾性多中心研究。数据集包含来自 6 家医院的 1160 例 TOF-MRA 检查,包括未破裂的动脉瘤(n=1096)和正常对照(n=166)。2013 年至 2019 年采集的 1037 例检查用于训练集;2020 年至 2021 年采集的 123 例检查用于外部测试集。我们提出了一种基于动脉瘤位置的均衡增强策略,并构建了一种基于双通道 SE-3D UNet 的检测模型。该模型在训练集中进行了 5 折交叉验证,然后在外部测试集上进行测试。
在患者水平上,该方法的检测率为 82.46%,在病灶水平上的检测率为 73.85%,在外部测试集上的假阳性率为每例 0.88。根据动脉瘤位置(除 ACA 外)、动脉瘤大小(除小于 3mm 外)或 MRI 扫描仪,该方法在亚组中的性能没有显著差异。与基本的 SE-3D UNet 相比,该方法提高了 15.79%的患者水平敏感性,降低了 4.19 个假阳性/例。
所提出的自动动脉瘤检测方法在控制每例较低假阳性率的同时,达到了可接受的敏感性。它可能为脑动脉瘤 MRA 筛查提供一种有用的辅助工具。
对自动检测脑动脉瘤的需求日益增长。
基于动脉瘤位置和双通道输入的均衡增强策略可以提高模型性能。
这项回顾性多中心研究表明,使用双通道 SE-3D UNet 的自动脑动脉瘤检测可以在控制低假阳性率的同时,达到可接受的敏感性。