Suppr超能文献

极性分子的场关联共振。

Field-linked resonances of polar molecules.

机构信息

Max-Planck-Institut für Quantenoptik, Garching, Germany.

Munich Center for Quantum Science and Technology, München, Germany.

出版信息

Nature. 2023 Feb;614(7946):59-63. doi: 10.1038/s41586-022-05651-8. Epub 2023 Feb 1.

Abstract

Scattering resonances are an essential tool for controlling the interactions of ultracold atoms and molecules. However, conventional Feshbach scattering resonances, which have been extensively studied in various platforms, are not expected to exist in most ultracold polar molecules because of the fast loss that occurs when two molecules approach at a close distance. Here we demonstrate a new type of scattering resonance that is universal for a wide range of polar molecules. The so-called field-linked resonances occur in the scattering of microwave-dressed molecules because of stable macroscopic tetramer states in the intermolecular potential. We identify two resonances between ultracold ground-state sodium-potassium molecules and use the microwave frequencies and polarizations to tune the inelastic collision rate by three orders of magnitude, from the unitary limit to well below the universal regime. The field-linked resonance provides a tuning knob to independently control the elastic contact interaction and the dipole-dipole interaction, which we observe as a modification in the thermalization rate. Our result provides a general strategy for resonant scattering between ultracold polar molecules, which paves the way for realizing dipolar superfluids and molecular supersolids, as well as assembling ultracold polyatomic molecules.

摘要

散射共振是控制超冷原子和分子相互作用的重要工具。然而,由于当两个分子接近时会发生快速损失,因此在大多数超冷极性分子中,预期不会存在传统的 Feshbach 散射共振。在这里,我们展示了一种新型的散射共振,它对广泛的极性分子都是通用的。由于分子间势中的稳定宏观四聚体状态,所谓的场关联共振出现在微波修饰分子的散射中。我们在超冷基态钠钾分子之间识别出两个共振,并使用微波频率和极化来将非弹性碰撞速率调谐三个数量级,从单位极限调谐到远低于通用范围。场关联共振提供了一个调谐旋钮,可以独立控制弹性接触相互作用和偶极-偶极相互作用,我们观察到这会导致热化速率发生改变。我们的结果为超冷极性分子之间的共振散射提供了一种通用策略,为实现偶极超流和分子超固体以及组装超冷多原子分子铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6a9/9891998/d6a9b4396129/41586_2022_5651_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验