Suppr超能文献

在体内对基因编码代谢物生物传感器进行校准必须考虑到校准过程中代谢物的代谢和细胞体积。

In vivo calibration of genetically encoded metabolite biosensors must account for metabolite metabolism during calibration and cellular volume.

机构信息

Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.

Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.

出版信息

J Neurochem. 2024 May;168(5):506-532. doi: 10.1111/jnc.15775. Epub 2023 Mar 27.

Abstract

Isotopic assays of brain glucose utilization rates have been used for more than four decades to establish relationships between energetics, functional activity, and neurotransmitter cycling. Limitations of these methods include the relatively long time (1-60 min) for the determination of labeled metabolite levels and the lack of cellular resolution. Identification and quantification of fuels for neurons and astrocytes that support activation and higher brain functions are a major, unresolved issues. Glycolysis is preferentially up-regulated during activation even though oxygen level and supply are adequate, causing lactate concentrations to quickly rise during alerting, sensory processing, cognitive tasks, and memory consolidation. However, the fate of lactate (rapid release from brain or cell-cell shuttling coupled with local oxidation) is long disputed. Genetically encoded biosensors can determine intracellular metabolite concentrations and report real-time lactate level responses to sensory, behavioral, and biochemical challenges at the cellular level. Kinetics and time courses of cellular lactate concentration changes are informative, but accurate biosensor calibration is required for quantitative comparisons of lactate levels in astrocytes and neurons. An in vivo calibration procedure for the Laconic lactate biosensor involves intracellular lactate depletion by intravenous pyruvate-mediated trans-acceleration of lactate efflux followed by sensor saturation by intravenous infusion of high doses of lactate plus ammonium chloride. In the present paper, the validity of this procedure is questioned because rapid lactate-pyruvate interconversion in blood, preferential neuronal oxidation of both monocarboxylates, on-going glycolytic metabolism, and cellular volumes were not taken into account. Calibration pitfalls for the Laconic lactate biosensor also apply to other metabolite biosensors that are standardized in vivo by infusion of substrates that can be metabolized in peripheral tissues. We discuss how technical shortcomings negate the conclusion that Laconic sensor calibrations support the existence of an in vivo astrocyte-neuron lactate concentration gradient linked to lactate shuttling from astrocytes to neurons to fuel neuronal activity.

摘要

脑葡萄糖利用率的同位素测定方法已经使用了四十多年,用于建立能量代谢、功能活动和神经递质循环之间的关系。这些方法的局限性包括标记代谢物水平的测定时间相对较长(1-60 分钟),以及缺乏细胞分辨率。鉴定和量化支持神经元和星形胶质细胞激活和更高脑功能的燃料是一个主要的、未解决的问题。即使氧水平和供应充足,激活过程也会优先上调糖酵解,导致在警觉、感觉处理、认知任务和记忆巩固期间乳酸浓度迅速升高。然而,乳酸的命运(快速从大脑中释放或与细胞间穿梭相结合并进行局部氧化)一直存在争议。遗传编码的生物传感器可以在细胞水平上确定细胞内代谢物浓度,并报告对感觉、行为和生化挑战的实时乳酸水平响应。细胞内乳酸浓度变化的动力学和时程是有信息的,但需要对星形胶质细胞和神经元中的乳酸水平进行定量比较,就需要对生物传感器进行准确校准。Laconic 乳酸生物传感器的体内校准程序涉及通过静脉内丙酮酸介导的乳酸外排加速来耗尽细胞内乳酸,然后通过静脉内输注高剂量乳酸加氯化铵来使传感器饱和,从而实现细胞内乳酸的快速转化。在本研究中,这种方法的有效性受到质疑,因为血液中乳酸和丙酮酸的快速转化、两种单羧酸的优先神经元氧化、持续的糖酵解代谢和细胞体积都没有被考虑在内。Laconic 乳酸生物传感器的校准陷阱也适用于其他代谢物生物传感器,这些传感器通过输注可在周围组织中代谢的底物在体内进行标准化。我们讨论了技术缺陷如何否定了 Laconic 传感器校准支持存在与从星形胶质细胞到神经元的乳酸穿梭相关的活体内星形胶质细胞-神经元乳酸浓度梯度以供应神经元活动的结论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验