Vilà-Guerau de Arellano Jordi, Hartogensis Oscar, Benedict Imme, de Boer Hugo, Bosman Peter J M, Botía Santiago, Cecchini Micael Amore, Faassen Kim A P, González-Armas Raquel, van Diepen Kevin, Heusinkveld Bert G, Janssens Martin, Lobos-Roco Felipe, Luijkx Ingrid T, Machado Luiz A T, Mangan Mary Rose, Moene Arnold F, Mol Wouter B, van der Molen Michiel, Moonen Robbert, Ouwersloot H G, Park So-Won, Pedruzo-Bagazgoitia Xabier, Röckmann Thomas, Adnew Getachew Agmuas, Ronda Reinder, Sikma Martin, Schulte Ruben, van Stratum Bart J H, Veerman Menno A, van Zanten Margreet C, van Heerwaarden Chiel C
Meteorology and Air Quality Section, Wageningen University, Wageningen, The Netherlands.
Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
Ann N Y Acad Sci. 2023 Apr;1522(1):74-97. doi: 10.1111/nyas.14956. Epub 2023 Feb 1.
Vegetation and atmosphere processes are coupled through a myriad of interactions linking plant transpiration, carbon dioxide assimilation, turbulent transport of moisture, heat and atmospheric constituents, aerosol formation, moist convection, and precipitation. Advances in our understanding are hampered by discipline barriers and challenges in understanding the role of small spatiotemporal scales. In this perspective, we propose to study the atmosphere-ecosystem interaction as a continuum by integrating leaf to regional scales (multiscale) and integrating biochemical and physical processes (multiprocesses). The challenges ahead are (1) How do clouds and canopies affect the transferring and in-canopy penetration of radiation, thereby impacting photosynthesis and biogenic chemical transformations? (2) How is the radiative energy spatially distributed and converted into turbulent fluxes of heat, moisture, carbon, and reactive compounds? (3) How do local (leaf-canopy-clouds, 1 m to kilometers) biochemical and physical processes interact with regional meteorology and atmospheric composition (kilometers to 100 km)? (4) How can we integrate the feedbacks between cloud radiative effects and plant physiology to reduce uncertainties in our climate projections driven by regional warming and enhanced carbon dioxide levels? Our methodology integrates fine-scale explicit simulations with new observational techniques to determine the role of unresolved small-scale spatiotemporal processes in weather and climate models.
植被与大气过程通过无数相互作用相互耦合,这些相互作用涉及植物蒸腾作用、二氧化碳同化作用、水分、热量和大气成分的湍流输送、气溶胶形成、湿对流和降水。学科壁垒以及理解小时空尺度作用方面的挑战阻碍了我们认识的进步。从这个角度出发,我们建议通过整合从叶片到区域尺度(多尺度)以及整合生化和物理过程(多过程),将大气 - 生态系统相互作用作为一个连续体来研究。未来的挑战包括:(1)云与冠层如何影响辐射的传输和冠层内穿透,从而影响光合作用和生物源化学转化?(2)辐射能如何在空间上分布并转化为热量、水分、碳和活性化合物的湍流通量?(3)局部(叶片 - 冠层 - 云,1米到数公里)生化和物理过程如何与区域气象学和大气成分(数公里到100公里)相互作用?(4)我们如何整合云辐射效应与植物生理学之间的反馈,以减少区域变暖和二氧化碳水平升高驱动的气候预测中的不确定性?我们的方法将精细尺度的显式模拟与新的观测技术相结合,以确定未解决的小时空尺度过程在天气和气候模型中的作用。