文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用扩散加权磁共振成像提高成人脑胶质瘤分子亚型的无创分类:一种经过外部验证的机器学习算法。

Improving Noninvasive Classification of Molecular Subtypes of Adult Gliomas With Diffusion-Weighted MR Imaging: An Externally Validated Machine Learning Algorithm.

机构信息

Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.

Department of Neurosurgery, The Henan Provincial People's Hospital, Zhengzhou, Henan, China.

出版信息

J Magn Reson Imaging. 2023 Oct;58(4):1234-1242. doi: 10.1002/jmri.28630. Epub 2023 Feb 2.


DOI:10.1002/jmri.28630
PMID:36727433
Abstract

BACKGROUND: Genetic testing for molecular markers of gliomas sometimes is unavailable because of time-consuming and expensive, even limited tumor specimens or nonsurgery cases. PURPOSE: To train a three-class radiomic model classifying three molecular subtypes including isocitrate dehydrogenase (IDH) mutations and 1p/19q-noncodeleted (IDHmut-noncodel), IDH wild-type (IDHwt), IDH-mutant and 1p/19q-codeleted (IDHmut-codel) of adult gliomas and investigate whether radiomic features from diffusion-weighted imaging (DWI) could bring additive value. STUDY TYPE: Retrospective. POPULATION: A total of 755 patients including 111 IDHmut-noncodel, 571 IDHwt, and 73 IDHmut-codel cases were divided into training (n = 480) and internal validation set (n = 275); 139 patients including 21 IDHmut-noncodel, 104 IDHwt, and 14 IDHmut-codel cases were utilized as external validation set. FIELD STRENGTH/SEQUENCE: A 1.5 T or 3.0 T/multiparametric MRI, including T1-weighted (T1), T1-weighted gadolinium contrast-enhanced (T1c), T2-weighted (T2), fluid attenuated inversion recovery (FLAIR), and DWI. ASSESSMENT: The performance of multiparametric radiomic model (random-forest model) using 22 selected features from T1, T2, FLAIR, T1c images and apparent diffusion coefficient (ADC) maps, and conventional radiomic model using 20 selected features from T1, T2, FLAIR, and T1c images was assessed in internal and external validation sets by comparing probability values and actual incidence. STATISTICAL TESTS: Mann-Whitney U test, Chi-Squared test, Wilcoxon test, receiver operating curve (ROC), and area under the curve (AUC); DeLong analysis. P < 0.05 was statistically significant. RESULTS: The multiparametric radiomic model achieved AUC values for IDHmut-noncodel, IDHwt, and IDHmut-codel of 0.8181, 0.8524, and 0.8502 in internal validation set and 0.7571, 0.7779, and 0.7491 in external validation set, respectively. Multiparametric radiomic model showed significantly better diagnostic performance after DeLong analysis, especially in classifying IDHwt and IDHmut-noncodel subtypes. DATA CONCLUSION: Radiomic features from DWI could bring additive value and improve the performance of conventional MRI-based radiomic model for classifying the molecular subtypes especially IDHmut-noncodel and IDHwt of adult gliomas. TECHNICAL EFFICACY: Stage 2.

摘要

背景:由于耗时且昂贵,甚至是由于肿瘤标本有限或无法进行手术,有时无法对分子标志物进行基因检测。

目的:旨在训练一个能够对包括异柠檬酸脱氢酶(IDH)突变和 1p/19q 未缺失(IDHmut-noncodel)、IDH 野生型(IDHwt)、IDH 突变且 1p/19q 缺失(IDHmut-codel)的成人脑胶质瘤的三种分子亚型进行分类的三分类放射组学模型,并探讨弥散加权成像(DWI)的放射组学特征是否具有附加价值。

研究类型:回顾性研究。

人群:共有 755 例患者,包括 111 例 IDHmut-noncodel、571 例 IDHwt 和 73 例 IDHmut-codel,将其分为训练集(n=480)和内部验证集(n=275);另外有 139 例患者,包括 21 例 IDHmut-noncodel、104 例 IDHwt 和 14 例 IDHmut-codel,被用于外部验证集。

磁场强度/序列:1.5T 或 3.0T/多参数 MRI,包括 T1 加权(T1)、T1 加权钆增强(T1c)、T2 加权(T2)、液体衰减反转恢复(FLAIR)和 DWI。

评估:通过比较概率值和实际发生率,评估了从 T1、T2、FLAIR、T1c 图像和表观扩散系数(ADC)图中选择的 22 个特征的多参数放射组学模型(随机森林模型)和从 T1、T2、FLAIR 和 T1c 图像中选择的 20 个特征的常规放射组学模型在内部和外部验证集中的性能。

统计学检验:Mann-Whitney U 检验、卡方检验、Wilcoxon 检验、受试者工作特征曲线(ROC)和曲线下面积(AUC);DeLong 分析。P<0.05 具有统计学意义。

结果:在内部验证集中,多参数放射组学模型对 IDHmut-noncodel、IDHwt 和 IDHmut-codel 的 AUC 值分别为 0.8181、0.8524 和 0.8502,在外部验证集中的 AUC 值分别为 0.7571、0.7779 和 0.7491。经 DeLong 分析,多参数放射组学模型的诊断性能显著提高,尤其是在分类 IDHwt 和 IDHmut-noncodel 亚型方面。

数据结论:DWI 的放射组学特征可提供附加价值,并提高基于常规 MRI 的放射组学模型对成人脑胶质瘤分子亚型的分类性能,特别是 IDHmut-noncodel 和 IDHwt 亚型。

技术功效:2 级。

相似文献

[1]
Improving Noninvasive Classification of Molecular Subtypes of Adult Gliomas With Diffusion-Weighted MR Imaging: An Externally Validated Machine Learning Algorithm.

J Magn Reson Imaging. 2023-10

[2]
Advanced imaging parameters improve the prediction of diffuse lower-grade gliomas subtype, IDH mutant with no 1p19q codeletion: added value to the T2/FLAIR mismatch sign.

Eur Radiol. 2019-8-24

[3]
Radiomic features from dynamic susceptibility contrast perfusion-weighted imaging improve the three-class prediction of molecular subtypes in patients with adult diffuse gliomas.

Eur Radiol. 2023-5

[4]
The T2-FLAIR-mismatch sign as an imaging biomarker for IDH and 1p/19q status in diffuse low-grade gliomas: a systematic review with a Bayesian approach to evaluation of diagnostic test performance.

Neurosurg Focus. 2019-12-1

[5]
Automated apparent diffusion coefficient analysis for genotype prediction in lower grade glioma: association with the T2-FLAIR mismatch sign.

J Neurooncol. 2020-9

[6]
Combining hyperintense FLAIR rim and radiological features in identifying IDH mutant 1p/19q non-codeleted lower-grade glioma.

Eur Radiol. 2022-6

[7]
Radiomics and Qualitative Features From Multiparametric MRI Predict Molecular Subtypes in Patients With Lower-Grade Glioma.

Front Oncol. 2022-1-21

[8]
Radiomic study on preoperative multi-modal magnetic resonance images identifies IDH-mutant TERT promoter-mutant gliomas.

Cancer Med. 2023-2

[9]
Radiogenomic association between the T2-FLAIR mismatch sign and IDH mutation status in adult patients with lower-grade gliomas: an updated systematic review and meta-analysis.

Eur Radiol. 2022-8

[10]
Improving the noninvasive classification of glioma genetic subtype with deep learning and diffusion-weighted imaging.

Neuro Oncol. 2022-4-1

引用本文的文献

[1]
Exploring a recurrence model for atypical meningioma based on multiparametric MRI radiomic and clinical characteristics: a multicenter retrospective cohort study.

Radiat Oncol. 2025-3-5

[2]
Quality Assessment of MRI-Radiomics-Based Machine Learning Methods in Classification of Brain Tumors: Systematic Review.

Diagnostics (Basel). 2024-12-5

[3]
Biologically interpretable multi-task deep learning pipeline predicts molecular alterations, grade, and prognosis in glioma patients.

NPJ Precis Oncol. 2024-8-16

[4]
Amide proton transfer weighted and diffusion weighted imaging based radiomics classification algorithm for predicting 1p/19q co-deletion status in low grade gliomas.

BMC Med Imaging. 2024-4-10

[5]
Advancing noninvasive glioma classification with diffusion radiomics: Exploring the impact of signal intensity normalization.

Neurooncol Adv. 2024-3-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索