文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

动态磁敏感对比灌注加权成像的放射组学特征可改善成人弥漫性胶质瘤患者分子亚型的三分类预测。

Radiomic features from dynamic susceptibility contrast perfusion-weighted imaging improve the three-class prediction of molecular subtypes in patients with adult diffuse gliomas.

机构信息

Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 450052, Henan, China.

Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.

出版信息

Eur Radiol. 2023 May;33(5):3455-3466. doi: 10.1007/s00330-023-09459-6. Epub 2023 Feb 28.


DOI:10.1007/s00330-023-09459-6
PMID:36853347
Abstract

OBJECTIVES: To investigate whether radiomic features extracted from dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) can improve the prediction of the molecular subtypes of adult diffuse gliomas, and to further develop and validate a multimodal radiomic model by integrating radiomic features from conventional and perfusion MRI. METHODS: We extracted 1197 radiomic features from each sequence of conventional MRI and DSC-PWI, respectively. The Boruta algorithm was used for feature selection and combination, and a three-class random forest method was applied to construct the models. We also constructed a combined model by integrating radiomic features and clinical metrics. The models' diagnostic performance for discriminating the molecular subtypes (IDH wild type [IDHwt], IDH mutant and 1p/19q-noncodeleted [IDHmut-noncodel], and IDH mutant and 1p/19q-codeleted [IDHmut-codel]) was compared using AUCs in the validation set. RESULTS: We included 272 patients (training set, n = 166; validation set, n = 106) with grade II-IV gliomas (mean age, 48.7 years; range, 19-77 years). The proportions of the molecular subtypes were 66.2% IDHwt, 15.1% IDHmut-noncodel, and 18.8% IDHmut-codel. Nineteen radiomic features (13 from conventional MRI and 6 from DSC-PWI) were selected to build the multimodal radiomic model. In the validation set, the multimodal radiomic model showed better performance than the conventional radiomic model did in predicting the IDHwt and IDHmut-codel subtypes, which was comparable to the conventional radiomic model in predicting the IDHmut-noncodel subtype. The multimodal radiomic model yielded similar performance as the combined model in predicting the three molecular subtypes. CONCLUSIONS: Adding DSC-PWI to conventional MRI can improve molecular subtype prediction in patients with diffuse gliomas. KEY POINTS: • The multimodal radiomic model outperformed conventional MRI when predicting both the IDH wild type and IDH mutant and 1p/19q-codeleted subtypes of gliomas. • The multimodal radiomic model showed comparable performance to the combined model in the prediction of the three molecular subtypes. • Radiomic features from T1-weighted gadolinium contrast-enhanced and relative cerebral blood volume images played an important role in the prediction of molecular subtypes.

摘要

目的:探讨基于动态磁敏感对比灌注加权成像(DSC-PWI)的放射组学特征是否可以提高成人弥漫性胶质瘤分子亚型的预测能力,并进一步开发和验证一种结合常规和灌注 MRI 放射组学特征的多模态放射组学模型。 方法:我们分别从常规 MRI 和 DSC-PWI 的每个序列中提取了 1197 个放射组学特征。使用 Boruta 算法进行特征选择和组合,并应用三分类随机森林方法构建模型。我们还通过整合放射组学特征和临床指标构建了一个联合模型。通过验证集中的 AUC 值比较模型对鉴别分子亚型(异柠檬酸脱氢酶野生型 [IDHwt]、异柠檬酸脱氢酶突变型和 1p/19q 未缺失 [IDHmut-noncodel]、异柠檬酸脱氢酶突变型和 1p/19q 缺失 [IDHmut-codel])的诊断性能。 结果:共纳入 272 例(训练集 n=166,验证集 n=106)Ⅱ-Ⅳ级胶质瘤患者(平均年龄 48.7 岁,范围 19-77 岁)。分子亚型的比例分别为 66.2% IDHwt、15.1% IDHmut-noncodel 和 18.8% IDHmut-codel。19 个放射组学特征(13 个来自常规 MRI,6 个来自 DSC-PWI)被选择来构建多模态放射组学模型。在验证集中,与常规放射组学模型相比,多模态放射组学模型在预测 IDHwt 和 IDHmut-codel 亚型方面表现更好,在预测 IDHmut-noncodel 亚型方面与常规放射组学模型相当。多模态放射组学模型在预测三种分子亚型方面的性能与联合模型相似。 结论:在弥漫性胶质瘤患者中,将 DSC-PWI 与常规 MRI 相结合可以提高分子亚型预测能力。 要点:• 多模态放射组学模型在预测 IDH 野生型和 IDH 突变型和 1p/19q 缺失型胶质瘤方面优于常规 MRI。• 多模态放射组学模型在预测三种分子亚型方面的性能与联合模型相当。• T1 加权钆增强和相对脑血容量图像的放射组学特征在预测分子亚型方面发挥了重要作用。

相似文献

[1]
Radiomic features from dynamic susceptibility contrast perfusion-weighted imaging improve the three-class prediction of molecular subtypes in patients with adult diffuse gliomas.

Eur Radiol. 2023-5

[2]
Improving Noninvasive Classification of Molecular Subtypes of Adult Gliomas With Diffusion-Weighted MR Imaging: An Externally Validated Machine Learning Algorithm.

J Magn Reson Imaging. 2023-10

[3]
Advanced imaging parameters improve the prediction of diffuse lower-grade gliomas subtype, IDH mutant with no 1p19q codeletion: added value to the T2/FLAIR mismatch sign.

Eur Radiol. 2019-8-24

[4]
The T2-FLAIR-mismatch sign as an imaging biomarker for IDH and 1p/19q status in diffuse low-grade gliomas: a systematic review with a Bayesian approach to evaluation of diagnostic test performance.

Neurosurg Focus. 2019-12-1

[5]
Combining hyperintense FLAIR rim and radiological features in identifying IDH mutant 1p/19q non-codeleted lower-grade glioma.

Eur Radiol. 2022-6

[6]
Predicting 1p/19q codeletion status using diffusion-, susceptibility-, perfusion-weighted, and conventional MRI in IDH-mutant lower-grade gliomas.

Acta Radiol. 2021-12

[7]
Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.

Eur Radiol. 2019-12-11

[8]
Static F-FET PET and DSC-PWI based on hybrid PET/MR for the prediction of gliomas defined by IDH and 1p/19q status.

Eur Radiol. 2021-6

[9]
Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes.

Eur Radiol. 2024-4

[10]
Comparison of Genetic Profiles and Prognosis of High-Grade Gliomas Using Quantitative and Qualitative MRI Features: A Focus on G3 Gliomas.

Korean J Radiol. 2021-2

引用本文的文献

[1]
Predicting IDH and 1p/19q molecular status of gliomas with multi-b values DWI.

Front Oncol. 2025-7-30

[2]
Predicting pathogenic DNA damage repair gene mutations in prostate cancer patients: a multi-center magnetic resonance imaging radiomics study.

Quant Imaging Med Surg. 2025-7-1

[3]
A three-classification machine learning model for non-invasive prediction of molecular subtypes in diffuse glioma: a two-center study.

Quant Imaging Med Surg. 2025-6-6

[4]
MRI-based machine learning reveals proteasome subunit PSMB8-mediated malignant glioma phenotypes through activating TGFBR1/2-SMAD2/3 axis.

Mol Biomed. 2025-5-8

[5]
Integrating quantitative DCE-MRI parameters and radiomic features for improved IDH mutation prediction in gliomas.

Front Oncol. 2025-3-11

[6]
Radiomics in glioma: emerging trends and challenges.

Ann Clin Transl Neurol. 2025-3

[7]
Radiogenomics: bridging the gap between imaging and genomics for precision oncology.

MedComm (2020). 2024-9-9

[8]
Biologically interpretable multi-task deep learning pipeline predicts molecular alterations, grade, and prognosis in glioma patients.

NPJ Precis Oncol. 2024-8-16

[9]
Novel Imaging Approaches for Glioma Classification in the Era of the World Health Organization 2021 Update: A Scoping Review.

Cancers (Basel). 2024-5-8

[10]
Differentiating IDH-mutant astrocytomas and 1p19q-codeleted oligodendrogliomas using DSC-PWI: high performance through cerebral blood volume and percentage of signal recovery percentiles.

Eur Radiol. 2024-8

本文引用的文献

[1]
Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients.

NPJ Precis Oncol. 2021-7-26

[2]
Molecular landscape of IDH-mutant primary astrocytoma Grade IV/glioblastomas.

Mod Pathol. 2021-7

[3]
Static F-FET PET and DSC-PWI based on hybrid PET/MR for the prediction of gliomas defined by IDH and 1p/19q status.

Eur Radiol. 2021-6

[4]
Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma.

Front Oncol. 2020-10-2

[5]
Incremental prognostic value and underlying biological pathways of radiomics patterns in medulloblastoma.

EBioMedicine. 2020-11

[6]
Vascular habitat analysis based on dynamic susceptibility contrast perfusion MRI predicts IDH mutation status and prognosis in high-grade gliomas.

Eur Radiol. 2020-2-20

[7]
cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas.

Acta Neuropathol. 2020-3

[8]
DSC and DCE Histogram Analyses of Glioma Biomarkers, Including IDH, MGMT, and TERT, on Differentiation and Survival.

Acad Radiol. 2020-1-23

[9]
Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.

Eur Radiol. 2019-12-11

[10]
Predicting the 1p/19q Codeletion Status of Presumed Low-Grade Glioma with an Externally Validated Machine Learning Algorithm.

Clin Cancer Res. 2019-9-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索