文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多参数MRI的影像组学和定性特征预测低级别胶质瘤患者的分子亚型

Radiomics and Qualitative Features From Multiparametric MRI Predict Molecular Subtypes in Patients With Lower-Grade Glioma.

作者信息

Sun Chen, Fan Liyuan, Wang Wenqing, Wang Weiwei, Liu Lei, Duan Wenchao, Pei Dongling, Zhan Yunbo, Zhao Haibiao, Sun Tao, Liu Zhen, Hong Xuanke, Wang Xiangxiang, Guo Yu, Li Wencai, Cheng Jingliang, Li Zhicheng, Liu Xianzhi, Zhang Zhenyu, Yan Jing

机构信息

Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

Front Oncol. 2022 Jan 21;11:756828. doi: 10.3389/fonc.2021.756828. eCollection 2021.


DOI:10.3389/fonc.2021.756828
PMID:35127472
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8814098/
Abstract

BACKGROUND: Isocitrate dehydrogenase (IDH) mutation and 1p19q codeletion status have been identified as significant markers for therapy and prognosis in lower-grade glioma (LGG). The current study aimed to construct a combined machine learning-based model for predicting the molecular subtypes of LGG, including (1) IDH wild-type astrocytoma (IDHwt), (2) IDH mutant and 1p19q non-codeleted astrocytoma (IDHmut-noncodel), and (3) IDH-mutant and 1p19q codeleted oligodendroglioma (IDHmut-codel), based on multiparametric magnetic resonance imaging (MRI) radiomics, qualitative features, and clinical factors. METHODS: A total of 335 patients with LGG (WHO grade II/III) were retrospectively enrolled. The sum of 5,929 radiomics features were extracted from multiparametric MRI. Selected robust, non-redundant, and relevant features were used to construct a random forest model based on a training cohort (n = 269) and evaluated on a testing cohort (n = 66). Meanwhile, preoperative MRIs of all patients were scored in accordance with Visually Accessible Rembrandt Images (VASARI) annotations and T2-fluid attenuated inversion recovery (T2-FLAIR) mismatch sign. By combining radiomics features, qualitative features (VASARI annotations and T2-FLAIR mismatch signs), and clinical factors, a combined prediction model for the molecular subtypes of LGG was built. RESULTS: The 17-feature radiomics model achieved area under the curve (AUC) values of 0.6557, 0.6830, and 0.7579 for IDHwt, IDHmut-noncodel, and IDHmut-codel, respectively, in the testing cohort. Incorporating qualitative features and clinical factors into the radiomics model resulted in improved AUCs of 0.8623, 0.8056, and 0.8036 for IDHwt, IDHmut-noncodel, and IDHmut-codel, with balanced accuracies of 0.8924, 0.8066, and 0.8095, respectively. CONCLUSION: The combined machine learning algorithm can provide a method to non-invasively predict the molecular subtypes of LGG preoperatively with excellent predictive performance.

摘要

背景:异柠檬酸脱氢酶(IDH)突变和1p19q共缺失状态已被确定为低级别胶质瘤(LGG)治疗和预后的重要标志物。本研究旨在构建一种基于机器学习的联合模型,用于根据多参数磁共振成像(MRI)影像组学、定性特征和临床因素预测LGG的分子亚型,包括(1)IDH野生型星形细胞瘤(IDHwt),(2)IDH突变型且1p19q未共缺失的星形细胞瘤(IDHmut-noncodel),以及(3)IDH突变型且1p19q共缺失的少突胶质细胞瘤(IDHmut-codel)。 方法:回顾性纳入335例LGG(世界卫生组织II/III级)患者。从多参数MRI中提取了5929个影像组学特征。选择稳健、非冗余且相关的特征,基于训练队列(n = 269)构建随机森林模型,并在测试队列(n = 66)上进行评估。同时,根据可视可及的伦勃朗图像(VASARI)注释和T2液体衰减反转恢复(T2-FLAIR)不匹配征象对所有患者的术前MRI进行评分。通过结合影像组学特征、定性特征(VASARI注释和T2-FLAIR不匹配征象)和临床因素,构建了LGG分子亚型的联合预测模型。 结果:在测试队列中,17特征影像组学模型对IDHwt、IDHmut-noncodel和IDHmut-codel的曲线下面积(AUC)值分别为0.6557、0.6830和0.7579。将定性特征和临床因素纳入影像组学模型后,IDHwt、IDHmut-noncodel和IDHmut-codel的AUC分别提高到0.8623、0.8056和0.8036,平衡准确率分别为0.8924、0.8066和0.8095。 结论:联合机器学习算法可以提供一种术前非侵入性预测LGG分子亚型的方法,具有出色的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7997/8814098/bec5129daba2/fonc-11-756828-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7997/8814098/038cea8da0e5/fonc-11-756828-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7997/8814098/c80211c20166/fonc-11-756828-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7997/8814098/bec5129daba2/fonc-11-756828-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7997/8814098/038cea8da0e5/fonc-11-756828-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7997/8814098/c80211c20166/fonc-11-756828-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7997/8814098/bec5129daba2/fonc-11-756828-g003.jpg

相似文献

[1]
Radiomics and Qualitative Features From Multiparametric MRI Predict Molecular Subtypes in Patients With Lower-Grade Glioma.

Front Oncol. 2022-1-21

[2]
Advanced imaging parameters improve the prediction of diffuse lower-grade gliomas subtype, IDH mutant with no 1p19q codeletion: added value to the T2/FLAIR mismatch sign.

Eur Radiol. 2019-8-24

[3]
Improving Noninvasive Classification of Molecular Subtypes of Adult Gliomas With Diffusion-Weighted MR Imaging: An Externally Validated Machine Learning Algorithm.

J Magn Reson Imaging. 2023-10

[4]
Combining hyperintense FLAIR rim and radiological features in identifying IDH mutant 1p/19q non-codeleted lower-grade glioma.

Eur Radiol. 2022-6

[5]
The T2-FLAIR-mismatch sign as an imaging biomarker for IDH and 1p/19q status in diffuse low-grade gliomas: a systematic review with a Bayesian approach to evaluation of diagnostic test performance.

Neurosurg Focus. 2019-12-1

[6]
Automated apparent diffusion coefficient analysis for genotype prediction in lower grade glioma: association with the T2-FLAIR mismatch sign.

J Neurooncol. 2020-9

[7]
Radiomic features from dynamic susceptibility contrast perfusion-weighted imaging improve the three-class prediction of molecular subtypes in patients with adult diffuse gliomas.

Eur Radiol. 2023-5

[8]
Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.

Eur Radiol. 2019-12-11

[9]
Radiogenomic association between the T2-FLAIR mismatch sign and IDH mutation status in adult patients with lower-grade gliomas: an updated systematic review and meta-analysis.

Eur Radiol. 2022-8

[10]
T2-FLAIR mismatch sign and machine learning-based multiparametric MRI radiomics in predicting IDH mutant 1p/19q non-co-deleted diffuse lower-grade gliomas.

Clin Radiol. 2024-5

引用本文的文献

[1]
IDH wild-type glioblastoma: Predictive value of standard-of-care (SOC) MRI for establishing MGMT promoter methylation status.

Neuroradiol J. 2025-8-3

[2]
MRI-based machine learning reveals proteasome subunit PSMB8-mediated malignant glioma phenotypes through activating TGFBR1/2-SMAD2/3 axis.

Mol Biomed. 2025-5-8

[3]
MRI-based habitat imaging predicts high-risk molecular subtypes and early risk assessment of lower-grade gliomas.

Cancer Imaging. 2025-3-28

[4]
Utilizing machine-learning techniques on MRI radiomics to identify primary tumors in brain metastases.

Front Neurol. 2025-1-6

[5]
Evaluation of glial tumors: correlation between magnetic resonance imaging and histopathological analysis.

Radiol Bras. 2024-9-16

[6]
Predictive machine learning models based on VASARI features for WHO grading, isocitrate dehydrogenase mutation, and 1p19q co-deletion status: a multicenter study.

Am J Cancer Res. 2024-8-25

[7]
Advances in Molecular Pathology, Diagnosis and Treatment of Spinal Cord Astrocytomas.

Technol Cancer Res Treat. 2024

[8]
Ten Years of VASARI Glioma Features: Systematic Review and Meta-Analysis of Their Impact and Performance.

AJNR Am J Neuroradiol. 2024-8-9

[9]
Diffusion kurtosis imaging-based habitat analysis identifies high-risk molecular subtypes and heterogeneity matching in diffuse gliomas.

Ann Clin Transl Neurol. 2024-8

[10]
Novel Imaging Approaches for Glioma Classification in the Era of the World Health Organization 2021 Update: A Scoping Review.

Cancers (Basel). 2024-5-8

本文引用的文献

[1]
The 2021 WHO Classification of Tumors of the Central Nervous System: a summary.

Neuro Oncol. 2021-8-2

[2]
The Role of the T2-FLAIR Mismatch Sign as an Imaging Marker of IDH Status in a Mixed Population of Low- and High-Grade Gliomas.

Brain Sci. 2020-11-19

[3]
Machine Learning-Based Radiomics Predicting Tumor Grades and Expression of Multiple Pathologic Biomarkers in Gliomas.

Front Oncol. 2020-9-11

[4]
Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics.

Neuro Oncol. 2021-2-25

[5]
T2-FLAIR mismatch in isocitrate dehydrogenase mutant astrocytomas: Variability and evolution.

Neurology. 2020-7-20

[6]
World Health Organization Grade II/III Glioma Molecular Status: Prediction by MRI Morphologic Features and Apparent Diffusion Coefficient.

Radiology. 2020-4-21

[7]
The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping.

Radiology. 2020-3-10

[8]
"Real world" use of a highly reliable imaging sign: "T2-FLAIR mismatch" for identification of IDH mutant astrocytomas.

Neuro Oncol. 2020-7-7

[9]
Predicting the 1p/19q Codeletion Status of Presumed Low-Grade Glioma with an Externally Validated Machine Learning Algorithm.

Clin Cancer Res. 2019-9-23

[10]
Radiomics: Principles and radiotherapy applications.

Crit Rev Oncol Hematol. 2019-3-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索