Sun Chen, Fan Liyuan, Wang Wenqing, Wang Weiwei, Liu Lei, Duan Wenchao, Pei Dongling, Zhan Yunbo, Zhao Haibiao, Sun Tao, Liu Zhen, Hong Xuanke, Wang Xiangxiang, Guo Yu, Li Wencai, Cheng Jingliang, Li Zhicheng, Liu Xianzhi, Zhang Zhenyu, Yan Jing
Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Front Oncol. 2022 Jan 21;11:756828. doi: 10.3389/fonc.2021.756828. eCollection 2021.
BACKGROUND: Isocitrate dehydrogenase (IDH) mutation and 1p19q codeletion status have been identified as significant markers for therapy and prognosis in lower-grade glioma (LGG). The current study aimed to construct a combined machine learning-based model for predicting the molecular subtypes of LGG, including (1) IDH wild-type astrocytoma (IDHwt), (2) IDH mutant and 1p19q non-codeleted astrocytoma (IDHmut-noncodel), and (3) IDH-mutant and 1p19q codeleted oligodendroglioma (IDHmut-codel), based on multiparametric magnetic resonance imaging (MRI) radiomics, qualitative features, and clinical factors. METHODS: A total of 335 patients with LGG (WHO grade II/III) were retrospectively enrolled. The sum of 5,929 radiomics features were extracted from multiparametric MRI. Selected robust, non-redundant, and relevant features were used to construct a random forest model based on a training cohort (n = 269) and evaluated on a testing cohort (n = 66). Meanwhile, preoperative MRIs of all patients were scored in accordance with Visually Accessible Rembrandt Images (VASARI) annotations and T2-fluid attenuated inversion recovery (T2-FLAIR) mismatch sign. By combining radiomics features, qualitative features (VASARI annotations and T2-FLAIR mismatch signs), and clinical factors, a combined prediction model for the molecular subtypes of LGG was built. RESULTS: The 17-feature radiomics model achieved area under the curve (AUC) values of 0.6557, 0.6830, and 0.7579 for IDHwt, IDHmut-noncodel, and IDHmut-codel, respectively, in the testing cohort. Incorporating qualitative features and clinical factors into the radiomics model resulted in improved AUCs of 0.8623, 0.8056, and 0.8036 for IDHwt, IDHmut-noncodel, and IDHmut-codel, with balanced accuracies of 0.8924, 0.8066, and 0.8095, respectively. CONCLUSION: The combined machine learning algorithm can provide a method to non-invasively predict the molecular subtypes of LGG preoperatively with excellent predictive performance.
背景:异柠檬酸脱氢酶(IDH)突变和1p19q共缺失状态已被确定为低级别胶质瘤(LGG)治疗和预后的重要标志物。本研究旨在构建一种基于机器学习的联合模型,用于根据多参数磁共振成像(MRI)影像组学、定性特征和临床因素预测LGG的分子亚型,包括(1)IDH野生型星形细胞瘤(IDHwt),(2)IDH突变型且1p19q未共缺失的星形细胞瘤(IDHmut-noncodel),以及(3)IDH突变型且1p19q共缺失的少突胶质细胞瘤(IDHmut-codel)。 方法:回顾性纳入335例LGG(世界卫生组织II/III级)患者。从多参数MRI中提取了5929个影像组学特征。选择稳健、非冗余且相关的特征,基于训练队列(n = 269)构建随机森林模型,并在测试队列(n = 66)上进行评估。同时,根据可视可及的伦勃朗图像(VASARI)注释和T2液体衰减反转恢复(T2-FLAIR)不匹配征象对所有患者的术前MRI进行评分。通过结合影像组学特征、定性特征(VASARI注释和T2-FLAIR不匹配征象)和临床因素,构建了LGG分子亚型的联合预测模型。 结果:在测试队列中,17特征影像组学模型对IDHwt、IDHmut-noncodel和IDHmut-codel的曲线下面积(AUC)值分别为0.6557、0.6830和0.7579。将定性特征和临床因素纳入影像组学模型后,IDHwt、IDHmut-noncodel和IDHmut-codel的AUC分别提高到0.8623、0.8056和0.8036,平衡准确率分别为0.8924、0.8066和0.8095。 结论:联合机器学习算法可以提供一种术前非侵入性预测LGG分子亚型的方法,具有出色的预测性能。
Technol Cancer Res Treat. 2024
AJNR Am J Neuroradiol. 2024-8-9
Neuro Oncol. 2021-8-2
Crit Rev Oncol Hematol. 2019-3-29