College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China.
The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China.
Angew Chem Int Ed Engl. 2023 May 2;62(19):e202216987. doi: 10.1002/anie.202216987. Epub 2023 Feb 21.
Intermolecular charge transport is one of the essential modes for modulating charge transport in molecular electronic devices. Supermolecules are highly promising candidates for molecular devices because of their abundant structures and easy functionalization. Herein, we report an efficient strategy to enhance charge transport through pillar[5]arene self-assembled monolayers (SAMs) by introducing cationic guests. The current density of pillar[5]arene SAMs can be raised up to about 2.1 orders of magnitude by inserting cationic molecules into the cavity of pillar[5]arenes in SAMs. Importantly, we have also observed a positive correlation between the charge transport of pillar[5]arene-based complex SAMs and the binding affinities of the pillar[5]arene-based complexation. Such an enhancement of charge transport is attributed to the efficient host-guest interactions that stabilize the supramolecular complexes and lower the energy gaps for charge transport. This work provides a predictive pattern for the regulation of intermolecular charge transport in guiding the design of next generation switches and functional sensors in supramolecular electronics.
分子间电荷输运是调节分子电子器件中电荷输运的基本模式之一。超分子由于其丰富的结构和易于功能化,是分子器件的理想候选材料。在此,我们报告了一种通过引入阳离子客体来增强通过[5]柱芳烃自组装单层(SAM)的电荷输运的有效策略。通过将阳离子分子插入 SAM 中[5]柱芳烃的空腔中,[5]柱芳烃 SAM 的电流密度可提高约 2.1 个数量级。重要的是,我们还观察到基于[5]柱芳烃的配合物 SAM 的电荷输运与基于[5]柱芳烃的配合物的结合亲和力之间存在正相关关系。这种电荷输运的增强归因于有效的主客体相互作用,这些相互作用稳定了超分子复合物并降低了电荷输运的能隙。这项工作为调节分子间电荷输运提供了一个预测模式,为在超分子电子学中指导下一代开关和功能传感器的设计提供了指导。