Suppr超能文献

深入了解水锌电池中氢键网络形成的钝化膜

In-Depth Insight into a Passive Film through Hydrogen-Bonding Network in an Aqueous Zinc Battery.

机构信息

Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei106, Taiwan.

Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei106, Taiwan.

出版信息

ACS Appl Mater Interfaces. 2023 Feb 15;15(6):7949-7958. doi: 10.1021/acsami.2c18154. Epub 2023 Feb 2.

Abstract

Electrochemical stability and interfacial reactions are crucial for rechargeable aqueous zinc batteries. Electrolyte engineering with low-cost aqueous electrolytes is highly required to stabilize their interfacial reactions. Herein, we propose a design strategy using glutamic additive and its derivatives with modification of hydrogen-bonding network to enable Zn aqueous battery at a low concentration (2 m ZnSO + 1 m LiSO). Computational, / spectroscopic, and electrochemical studies suggest that additives with moderate interactions, such as 0.1 mol % glutamic additive (G1), preferentially absorb on the Zn surface to homogenize Zn plating and favorably interact with Zn in bulk to weaken the interaction between HO and Zn. As a result, uniform deposition and stable electrochemical performance are realized. The Zn||Cu half-cell lasts for more than 200 cycles with an average Coulombic efficiency (CE) of >99.32% and the Zn||Zn symmetrical cells for 1400 h with a low and stable overpotential under a current density of 0.5 mA cm, which is better than the reported results. Moreover, adding 0.1 mol % G1 to the Zn||LFP full cell improves its electrochemical performance with stable cycling and achieves a remarkable capacity of 147.25 mAh g with a CE of 99.79% after 200 cycles.

摘要

电化学稳定性和界面反应对于可充电水系锌电池至关重要。需要使用低成本水系电解液进行电解液工程设计,以稳定其界面反应。在此,我们提出了一种设计策略,使用谷氨酸添加剂及其衍生物来修饰氢键网络,从而能够在低浓度(2 m ZnSO + 1 m LiSO)下实现 Zn 水系电池。计算、光谱和电化学研究表明,具有中等相互作用的添加剂,如 0.1 mol%的谷氨酸添加剂(G1),优先在 Zn 表面吸附,从而均匀化 Zn 电镀,并与 Zn 体相有利地相互作用,从而削弱 HO 和 Zn 之间的相互作用。结果,实现了均匀的沉积和稳定的电化学性能。Zn||Cu 半电池在 200 次循环以上具有超过 99.32%的平均库仑效率(CE),Zn||Zn 对称电池在 0.5 mA cm 的电流密度下具有 1400 小时的低且稳定的过电位,优于报道的结果。此外,在 Zn||LFP 全电池中添加 0.1 mol%的 G1 可改善其电化学性能,实现稳定循环,并在 200 次循环后获得 147.25 mAh g 的显著容量和 99.79%的 CE。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验