Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China.
J Am Chem Soc. 2022 Jun 29;144(25):11129-11137. doi: 10.1021/jacs.2c00551. Epub 2022 Jun 14.
The hydrophobic internal cavity and hydrophilic external surface of cyclodextrins (CDs) render promising electrochemical applications. Here, we report a comparative and mechanistic study on the use of CD molecules (α-, β-, and γ-CD) as electrolyte additives for rechargeable Zn batteries. The addition of α-CD in aqueous ZnSO solution reduces nucleation overpotential and activation energy of Zn plating and suppresses H generation. Computational, spectroscopic, and electrochemical studies reveal that α-CD preferentially adsorbs in parallel on the Zn surface via secondary hydroxyl groups, suppressing water-induced side reactions of hydrogen evolution and hydroxide sulfate formation. Additionally, the hydrophilic exterior surface of α-CD with intense electron density simultaneously facilitates Zn deposition and alleviates Zn dendrite formation. A formulated 3 M ZnSO + 10 mM α-CD electrolyte enables homogenous Zn plating/stripping (average Coulombic efficiency ∼ 99.90%) at 1 mA cm in Zn|Cu cells and a considerable capacity retention of 84.20% after 800 cycles in Zn|VO full batteries. This study provides insight into the use of supramolecular macrocycles to modulate and enhance the interface stability and kinetics of metallic anodes for aqueous battery chemistry.
环糊精(CDs)的疏水性内腔和亲水性外表面使其在电化学应用中具有广阔的前景。在这里,我们报道了一种关于 CD 分子(α-、β-和γ-CD)作为可再充电 Zn 电池电解质添加剂的比较和机理研究。在含有α-CD 的水溶液中,Zn 电镀的成核过电位和活化能降低,H 生成受到抑制。计算、光谱和电化学研究表明,α-CD 通过二级羟基优先以平行方式吸附在 Zn 表面,抑制了水诱导的析氢和氢氧化物硫酸盐形成的副反应。此外,α-CD 的亲水外部表面具有强烈的电子密度,同时促进了 Zn 的沉积并减轻了 Zn 枝晶的形成。一种配方为 3 M ZnSO + 10 mM α-CD 的电解质在 Zn|Cu 电池中以 1 mA cm 均匀地进行 Zn 电镀/剥离(平均库仑效率约为 99.90%),在 Zn|VO 全电池中经过 800 次循环后,容量保持率为 84.20%。本研究为利用超分子大环来调节和增强水系电池化学中金属阳极的界面稳定性和动力学提供了新的思路。