Suppr超能文献

采用阻抗谱研究固体氧化物电解池氧电极中的闭孔形成。

Closed-Pore Formation in Oxygen Electrodes for Solid Oxide Electrolysis Cells Investigated by Impedance Spectroscopy.

机构信息

Institute of Chemical Technologies and Analytics, Technische Universität (TU) Wien, Getreidemarkt 9/164-EC, 1060Vienna, Austria.

Centre for Electrochemical Surface Technology GmbH, Viktor-Kaplan-Straße 2, 2700Wiener Neustadt, Austria.

出版信息

ACS Appl Mater Interfaces. 2023 Feb 15;15(6):8076-8092. doi: 10.1021/acsami.2c20731. Epub 2023 Feb 2.

Abstract

Electrochemical impedance spectroscopy was used to investigate the chemical capacitance of LaSrCoO (LSC) thin-film electrodes under anodic polarization (i.e., in the electrolysis mode). For this purpose, electrodes with different microstructures were prepared via pulsed-laser deposition. Analysis of dense electrodes and electrodes with open porosity revealed decreasing chemical capacitances with increasing anodic overpotentials, as expected from defect chemical considerations. However, extremely high chemical capacitance peaks with values in the range of 10 F/cm at overpotentials of >140 mV were obtained after annealing for several hours in synthetic air and/or after applying high anodic bias voltages of >750 mV. From the results of several surface analysis techniques and transmission electron microscopy, it is concluded that closed pores develop upon both of these treatments: (i) During annealing, initially open pores get closed by SrSO, which forms due to strontium segregation in measurement gases with minute traces of sulfur. (ii) The bias treatment causes mechanical failure and morphological changes including closed pores in the bulk of dense films. Under anodic polarization, high-pressure oxygen accumulates in those closed pores, and this causes the capacitance peak. Model calculations based on a real-gas equation allow us to properly predict the experimentally obtained capacitance increase. We demonstrate that analysis of the chemical capacitance of oxygen electrodes in solid oxide electrolysis cells can thus be used as a nondestructive observation tool to detect and quantify closed porosity with a lower detection limit between 10 and 10.

摘要

电化学阻抗谱被用来研究在阳极极化下(即在电解模式下)LaSrCoO(LSC)薄膜电极的化学电容。为此,通过脉冲激光沉积制备了具有不同微观结构的电极。对致密电极和具有开放孔隙率的电极进行分析,发现随着阳极过电势的增加,化学电容逐渐降低,这符合缺陷化学的考虑。然而,在合成空气中退火数小时后,或在施加高于 750 mV 的高阳极偏压后,得到了具有 10 F/cm 左右超高化学电容峰值的电极。通过几种表面分析技术和透射电子显微镜的结果,可以得出以下结论:(i)在退火过程中,由于在测量气体中存在微量硫,导致 SrSO 形成,最初开放的孔会被 SrSO 封闭,SrSO 会在测量气体中发生锶偏析。(ii)偏压处理会导致致密膜体相中的机械失效和形貌变化,包括封闭的孔。在阳极极化下,高压氧气会在这些封闭的孔中积累,从而导致电容峰值。基于真实气体方程的模型计算可以正确预测实验得到的电容增加。我们证明,因此,对固体氧化物电解槽中氧电极的化学电容进行分析可以作为一种无损观察工具,用于检测和量化具有 10 到 10 之间的较低检测限的封闭孔隙率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d839/9940111/b98b97ba8117/am2c20731_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验