Suppr超能文献

基于神经影像学的三维卷积神经网络在阿尔茨海默病诊断中的应用综述。

A review of the application of three-dimensional convolutional neural networks for the diagnosis of Alzheimer's disease using neuroimaging.

机构信息

Intelligent Physiological Measurement and Clinical Translation, Beijing International Platform for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China.

出版信息

Rev Neurosci. 2023 Feb 2;34(6):649-670. doi: 10.1515/revneuro-2022-0122. Print 2023 Aug 28.

Abstract

Alzheimer's disease (AD) is a degenerative disorder that leads to progressive, irreversible cognitive decline. To obtain an accurate and timely diagnosis and detect AD at an early stage, numerous approaches based on convolutional neural networks (CNNs) using neuroimaging data have been proposed. Because 3D CNNs can extract more spatial discrimination information than 2D CNNs, they have emerged as a promising research direction in the diagnosis of AD. The aim of this article is to present the current state of the art in the diagnosis of AD using 3D CNN models and neuroimaging modalities, focusing on the 3D CNN architectures and classification methods used, and to highlight potential future research topics. To give the reader a better overview of the content mentioned in this review, we briefly introduce the commonly used imaging datasets and the fundamentals of CNN architectures. Then we carefully analyzed the existing studies on AD diagnosis, which are divided into two levels according to their inputs: 3D subject-level CNNs and 3D patch-level CNNs, highlighting their contributions and significance in the field. In addition, this review discusses the key findings and challenges from the studies and highlights the lessons learned as a roadmap for future research. Finally, we summarize the paper by presenting some major findings, identifying open research challenges, and pointing out future research directions.

摘要

阿尔茨海默病(AD)是一种进行性、不可逆转的认知功能衰退疾病。为了获得准确和及时的诊断,并在早期发现 AD,已经提出了许多基于卷积神经网络(CNN)的方法,这些方法利用神经影像学数据。由于 3D CNN 可以比 2D CNN 提取更多的空间判别信息,因此它们已成为 AD 诊断的一个很有前途的研究方向。本文的目的是介绍使用 3D CNN 模型和神经影像学模式诊断 AD 的最新技术,重点介绍所使用的 3D CNN 架构和分类方法,并突出潜在的未来研究课题。为了让读者更好地了解本文综述中提到的内容,我们简要介绍了常用的成像数据集和 CNN 架构的基础知识。然后我们仔细分析了现有的 AD 诊断研究,根据输入将其分为两个层次:3D 个体水平 CNN 和 3D 斑块水平 CNN,突出了它们在该领域的贡献和意义。此外,本综述还讨论了研究中的关键发现和挑战,并强调了一些经验教训,为未来的研究指明了方向。最后,我们通过提出一些主要发现、确定开放的研究挑战并指出未来的研究方向来总结本文。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验