Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China.
Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau SAR 999078, China.
Sensors (Basel). 2023 May 23;23(11):4993. doi: 10.3390/s23114993.
Currently, deep learning aided medical imaging is becoming the hot spot of AI frontier application and the future development trend of precision neuroscience. This review aimed to render comprehensive and informative insights into the recent progress of deep learning and its applications in medical imaging for brain monitoring and regulation. The article starts by providing an overview of the current methods for brain imaging, highlighting their limitations and introducing the potential benefits of using deep learning techniques to overcome these limitations. Then, we further delve into the details of deep learning, explaining the basic concepts and providing examples of how it can be used in medical imaging. One of the key strengths is its thorough discussion of the different types of deep learning models that can be used in medical imaging including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial network (GAN) assisted magnetic resonance imaging (MRI), positron emission tomography (PET)/computed tomography (CT), electroencephalography (EEG)/magnetoencephalography (MEG), optical imaging, and other imaging modalities. Overall, our review on deep learning aided medical imaging for brain monitoring and regulation provides a referrable glance for the intersection of deep learning aided neuroimaging and brain regulation.
目前,深度学习辅助医学成像正成为人工智能前沿应用的热点和精准神经科学的未来发展趋势。本综述旨在全面深入地了解深度学习及其在脑监测和调控的医学成像中的应用的最新进展。文章首先概述了当前的脑成像方法,强调了它们的局限性,并介绍了使用深度学习技术克服这些局限性的潜在好处。然后,我们进一步深入探讨了深度学习的细节,解释了基本概念,并提供了一些示例,说明如何将其应用于医学成像。其中一个关键优势是它深入讨论了可以用于医学成像的不同类型的深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)和生成对抗网络(GAN)辅助磁共振成像(MRI)、正电子发射断层扫描(PET)/计算机断层扫描(CT)、脑电图(EEG)/脑磁图(MEG)、光学成像和其他成像方式。总的来说,我们关于深度学习辅助脑监测和调控的医学成像的综述为深度学习辅助神经影像学和脑调控的交叉领域提供了一个参考视角。